Please wait a minute...
金属学报  2018, Vol. 54 Issue (3): 463-469    DOI: 10.11900/0412.1961.2017.00121
  本期目录 | 过刊浏览 |
离子镀过程中基体“热影响区”的演变及其对镀层的影响
郭腾1, 李洪涛2, 蒋百灵1,2(), 邢益彬2, 张新宇2
1 西安理工大学材料科学与工程学院 西安 710048
2 南京工业大学材料科学与工程学院 南京 211816
Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings
Teng GUO1, Hongtao LI2, Bailing JIANG1,2(), Yibin XING2, Xinyu ZHANG2
1 School of Materials Science and Engineering, Xi′an University of Technology, Xi'an 710048, China;
2 School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
全文: PDF(4666 KB)   HTML
摘要: 

以淬火态40CrNiMoA为基材,研究了靶功率密度对“热影响区”升温幅度、区域尺度及镀层结构的影响规律。结果表明,随着靶功率密度从20.61 W/cm2提高到143.01 W/cm2,不仅与镀层比邻的基体温度从310 ℃升高到525 ℃、“热影响区”的尺度从0.37 mm增加到2.51 mm,而且纯Ti镀层的择优取向由(002)转变为(110),平均晶粒尺寸由9.9 nm增大至19.5 nm,表面粗糙度先减小后增大。同时,当基体温度大于300 ℃时,镀层的内应力随着晶格微观缺陷的消除而释放。

关键词 离子镀技术热影响区Ti镀层组织结构内应力    
Abstract

In the process of depositing coatings on the surface of metal substrates via ion plating, substrate temperature increases due to the bombardment of deposited particles and the heat radiation of discharge target, forming "heat affected zone" where substrate temperature gradually reduces from the surface. In this work, quenched 40CrNiMoA was prepared as substrate to discuss about the influence of target power density on the temperature rising range, region scale of "heat affected zone" and microstructure of Ti coating. The results show that the traditional metal heat treatment method can accurately characterize temperature rising range and region scale of "heat affected zone". And, with target power density increases from 20.61 W/cm2 to 143.01 W/cm2, substrate temperature ranges from 310 ℃ to 525 ℃, the region scale of "heat affected zone" reaches to 2.51 mm. Also, the preferential orientation of Ti coating changes from (002) to (110), the average grain size significantly increases from 9.9 nm to 19.5 nm, the surface roughness declines first and then increases slightly. In addition, the internal stress releases gradually for elimination of lattice defects when substrate temperature is above 300 ℃.

Key wordsion plating    heat affected zone    Ti coating    microstructure    internal stress
收稿日期: 2017-04-07     
基金资助:资助项目 国家自然科学基金项目No.51401106
作者简介:

作者简介 郭 腾,女,1990年生,硕士生

引用本文:

郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
Teng GUO, Hongtao LI, Bailing JIANG, Yibin XING, Xinyu ZHANG. Evolution of Substrate "Heat Affected Zone" in Ion Plating and Its Effect on Coatings. Acta Metall Sin, 2018, 54(3): 463-469.

链接本文:

https://www.ams.org.cn/CN/10.11900/0412.1961.2017.00121      或      https://www.ams.org.cn/CN/Y2018/V54/I3/463

图1  淬火态40CrNiMoA显微硬度随回火温度的变化
图2  不同靶功率密度下镀层与基体界面下方沿纵深方向的显微硬度分布
图3  不同靶功率密度下比邻镀层的基体组织形貌
图4  不同靶功率密度下镀层与基体界面下方沿纵深方向的温度分布
PA / (Wcm-2) Microhardness / MPa T / ℃ σ / GPa
20.61 512 310 -2.2
67.07 468 380 -1.0
97.50 422 445 -0.6
129.78 404 465 -0.5
130.01 385 500 -0.6
143.01 355 525 -0.9
表1  不同靶功率密度下比邻镀层的基体温度和镀层内应力
PA / (Wcm-2) TC(100) TC(002) TC(101) TC(102) TC(110) TC(103) TC(112) D / nm
20.61 0.095 0.483 0.055 0.194 - 0.172 - 9.9
67.07 0.134 0.071 0.106 0.086 0.366 0.086 0.152 14.8
97.50 0.090 0.077 0.098 0.096 0.418 0.081 0.139 15.7
129.78 0.108 0.088 0.102 0.085 0.403 0.076 0.139 16.3
130.01 0.147 0.099 0.098 0.089 0.342 0.105 0.120 16.5
143.01 0.217 0.085 0.137 0.162 0.164 - 0.234 19.5
表2  不同靶功率密度下纯金属Ti镀层的织构系数和平均晶粒尺寸
图5  不同靶功率密度下纯金属Ti镀层的XRD谱
图6  不同靶功率密度下纯金属Ti镀层的表面形貌
[1] Louring S, Madsen N D, Sillassen M, et al.Microstructural, mechanical and tribological analysis of nanocomposite Ti-C-N coatings deposited by industrial-scale DC magnetron sputtering[J]. Surf. Coat. Technol., 2014, 245: 40
[2] Yeh T S, Wu J M, Hu L J.The properties of TiN thin films deposited by pulsed direct current magnetron sputtering[J]. Thin Solid Films, 2008, 516: 7294
[3] Zuo J, Xie Y N, Zhang J, et al.TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance[J]. Surf. Coat. Technol., 2015, 277: 227
[4] Tian M B.Thin Film Technologies and Materials [M]. Beijing: Tsinghua University Press, 2006: 493(田民波. 薄膜技术与薄膜材料 [M]. 北京: 清华大学出版社, 2006: 493)
[5] Gong C.Study of droplets and its effect on performance of TiN films prepared by arc ion plating [D]. Changsha: Central South University, 2013(龚才. 电弧离子镀TiN薄膜表面液滴及其对薄膜性能的影响研究 [D]. 长沙: 中南大学, 2013)
[6] Zhang Y J, Wu Z G, Zhang W W, et al.Comparative study on the tribological properties of TiN films prepared by multi arc ion plating and filtered cathodic arc plasma deposition[J]. Tribology, 2004, 24: 498(张玉娟, 吴志国, 张伟伟等. 多弧镀及磁过滤阴极弧沉积TiN薄膜的摩擦学性能对比 [J]. 摩擦学学报, 2004, 24: 498)
[7] Xiao J Q, Lang W C, Zhao Y H, et al.Influence of axisymmetric magnetic field on microstructure and friction performance of TiN film deposited by arc ion plating[J]. Acta Metall. Sin., 2011, 47: 566(肖金泉, 郎文昌, 赵彦辉等. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响 [J]. 金属学报, 2011, 47: 566)
[8] Anton J M, Mishra B, Moore J J, et al.Investigation of processing parameters for pulsed closed-field unbalanced magnetron co-sputtered TiC-C thin films[J]. Surf. Coat. Technol., 2006, 201: 4131
[9] Lin J, Moore J J, Mishra B, et al.Syntheses and characterization of TiC/a∶C composite coatings using pulsed closed field unbalanced magnetron sputtering (P-CFUBMS)[J]. Thin Solid Films, 2008, 517: 1131
[10] Bai X.Calculation of deposition temperature of substrate via pulsed-bias arc ion plating and preliminary study on nano- multilayer hard films [D]. Dalian: Dalian University of Technology, 2004(白晓. 脉冲偏压电弧离子镀基体沉积温度的计算与纳米多层硬质薄膜的初步研究[D]. 大连: 大连理工大学, 2004)
[11] Dai H Y, Jiang H, Zhan C Y, et al.Effects of sputtering current on the bonding structure and mechanical properties of diamond-like carbon films deposited by MFPUMST[J]. Surf. Interface Anal., 2009, 41: 560
[12] Chowdhury S, Laugier M T, Rahman I Z. Effects of substrate temperature on bonding structure and mechanical properties of amorphous carbon films [J]. Thin Solid Films, 2004, 448-448: 174
[13] Kim D, Han Y, Cho J S, et al. Low temperature deposition of ITO thin films by ion beam sputtering [J]. Thin Solid Films, 2000, 377-378: 81
[14] Magnus F, Ingason A S, Sveinsson O B, et al.Morphology of TiN thin films grown on SiO2 by reactive high power impulse magnetron sputtering[J]. Thin Solid Films, 2011, 520: 1621
[15] Patsalas P, Charitidis C, Logothetidis S.The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films[J]. Surf. Coat. Technol., 2000, 125: 335
[16] Subramanian B, Ashok K, Jayachandran M.Effect of substrate temperature on the structural properties of magnetron sputtered titanium nitride thin films with brush plated nickel interlayer on mild steel[J]. Appl. Surf. Sci., 2008, 255: 2133
[17] Zhang L, Shi L Q, He Z J, et al.Deposition of dense and smooth Ti films using ECR plasma-assisted magnetron sputtering[J]. Surf. Coat. Technol., 2009, 203: 3356
[18] Zhao S S, Yang Y, Li J B, et al.Effect of deposition processes on residual stress profiles along the thickness in (Ti, Al)N films[J]. Surf. Coat. Technol., 2008, 202: 5185
[19] Zhang L, He Z B, Liao G, et al.Influence of B doping on structure and properties of Ti thin film[J]. Acta Phys. Sin., 2012, 61: 186803(张玲, 何智兵, 廖国等. B掺杂对Ti薄膜结构与性能的影响 [J]. 物理学报, 2012, 61: 186803)
[20] Dong M L, Cui X F, Wang H D, et al.Effect of different substrate temperatures on microstructure and residual stress of Ti films[J]. Rare Met. Mater. Eng., 2016, 45: 843
[21] Cheng B X.A study of the structure and properties of Al and Cu films fabricated by magnetron sputtering [D]. Chengdu: Sichuan University, 2007(程丙勋. 磁控溅射制备Al膜和Cu膜的结构与性能研究 [D]. 成都: 四川大学, 2007)
[22] Duan L L.Studies on the structure and properties of Ti films fabricated by magnetron sputtering [D]. Lanzhou: Lanzhou University, 2008(段玲珑. 磁控溅射制备Ti膜的结构与性能研究[D]. 兰州: 兰州大学, 2008)
[23] Chawla V, Jayaganthan R, Chawla A K, et al.Morphological study of magnetron sputtered Ti thin films on silicon substrate[J]. Mater. Chem. Phys., 2008, 111: 414
[24] Brama Y L, Sun Y, Dangeti S R K, et al. Response of sputtered titanium films on silicon to thermal oxidation[J]. Surf. Coat. Technol., 2005, 195: 189
[25] Yang C, Jiang B L, Liu Z, et al.Nanocrystalline titanium films deposited via thermal-emission-enhanced magnetron sputtering[J]. Thin Solid Films, 2015, 597: 117
[26] Yang C, Jiang B L, Feng L, et al.Effect of discharge characteristics of target on ionization and deposition of deposited particles[J]. Acta Metall. Sin.,2015, 51: 1523(杨超, 蒋百灵, 冯林等. 靶面放电特性对沉积粒子离化率及沉积行为的影响 [J]. 金属学报, 2015, 51: 1523)
[27] Nakamura T, Okimura K.Ti ion density in inductively coupled plasma enhanced dc magnetron sputtering[J]. Vacuum, 2004, 74: 391
[1] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[2] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[3] 谭丽丽, 陈军修, 于晓明, 杨柯. 生物可降解MgYREZr合金的研究进展[J]. 金属学报, 2017, 53(10): 1207-1214.
[4] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[5] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[6] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[7] 张体明,王勇,赵卫民,唐秀艳,杜天海,杨敏. 高压煤制气环境下X80钢及热影响区的氢渗透参数研究[J]. 金属学报, 2015, 51(9): 1101-1110.
[8] 杨辉, 夏爽, 张子龙, 赵清, 刘廷光, 周邦新, 白琴. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响[J]. 金属学报, 2015, 51(3): 333-340.
[9] 赵霞, 查向东, 刘扬, 张龙, 梁田, 马颖澈, 程乐明. 一种新型镍基耐蚀合金与625合金异种金属焊接接头的组织和力学性能*[J]. 金属学报, 2015, 51(2): 249-256.
[10] 崔文芳,曹栋,秦高梧. 磁控溅射沉积Ti/TiN多层膜的组织特征及耐磨损性能*[J]. 金属学报, 2015, 51(12): 1531-1537.
[11] 章海霞, 李中奎, 周廉, 许并社, 王永祯. 氧化膜结构及内应力对新锆合金腐蚀机理的影响[J]. 金属学报, 2014, 50(12): 1529-1537.
[12] 周峰, 赵霞, 查向东, 马颖澈, 刘奎. 一种新型镍基耐蚀合金与304奥氏体不锈钢异种金属焊接接头的组织和力学性能[J]. 金属学报, 2014, 50(11): 1335-1342.
[13] 赵霞, 刘扬, 查向东, 程乐明, 马颖澈, 刘奎. 一种新型镍基耐蚀合金焊接接头的组织与力学性能[J]. 金属学报, 2014, 50(11): 1377-1383.
[14] 田素贵,王欣,谢君,刘臣,郭忠革,刘姣,孙文儒. GH4169G合金热处理期间的相转变特征与机理分析[J]. 金属学报, 2013, 49(7): 845-852.
[15] 徐庆东,林鑫,宋梦华,杨海欧,黄卫东. 激光成形修复2Cr13不锈钢热影响区的组织研究[J]. 金属学报, 2013, 49(5): 605-613.