Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 1-9    DOI: 10.11900/0412.1961.2015.00489
  本期目录 | 过刊浏览 |
FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*
徐滨士1,2,方金祥1,2,董世运1(),刘晓亭1,闫世兴1,宋超群1,2,夏丹1
1 装甲兵工程学院装备再制造技术国防科技重点实验室, 北京 100072
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 哈尔滨 150001
HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL
Binshi XU1,2,Jinxiang FANG1,2,Shiyun DONG1(),Xiaoting LIU1,Shixing YAN1,Chaoqun SONG1,2,Dan XIA1
1 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
2 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
引用本文:

徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
Binshi XU, Jinxiang FANG, Shiyun DONG, Xiaoting LIU, Shixing YAN, Chaoqun SONG, Dan XIA. HEAT-AFFECTED ZONE MICROSTRUCTURE EVOLU- TION AND ITS EFFECTS ON MECHANICAL PROPERTIES FOR LASER CLADDING FV520B STAINLESS STEEL[J]. Acta Metall Sin, 2016, 52(1): 1-9.

全文: PDF(11830 KB)   HTML
  
摘要: 

对FV520B不锈钢零件的激光熔覆热影响区进行了组织特征分析, 结合过冷奥氏体连续冷却转变(CCT)实验、模拟热影响区拉伸及冲击实验, 研究了热影响区组织及力学性能的演变规律和机理. 结果表明, 热影响区可以按照组织演化特点分为4个特征区域: 半熔区(A区), 析出相溶解区(B区), 完全奥氏体化区(C区)和部分奥氏体化区(D区). 各区域均为马氏体组织, 靠近界面区域的组织较为粗大, 第二相发生溶解, 硬度更高, 固态相变点更低; 距界面稍远区域回火马氏体增多, 第二相未溶解, 但有长大的趋势, 硬度较低, 固态相变点较高, 接近原始材料. 决定激光熔覆热影响区组织及力学性能的最主要因素是热循环的最高温度, 最高温度越高, 强度损失越大, 固态相变点越低, 相应硬度越高, 延伸率及冲击功降低.

关键词 激光熔覆热影响区马氏体不锈钢组织转变    
Abstract

FV520B steel is a martensitic stainless steel developed by Firth-Vickers, with good corrosion resistance and weldability, high strength and toughness. It has been widely used in heavy load and corrosion-resistant components such as compressor impeller, valves, fasteners and pump shafts, which are easy to be damaged because of severe service-environments. The production cycle of those expensive components are long. If these components can be repaired and remanufactured, the accessional value of the products can be reserved. At the same time, it can save time, resources and funds, and reduce environmental pollutions. Laser cladding is an attractive green reconstruction technology, which is widely used for the remanufacturing of faulty metal parts. However, the heat-affected zone (HAZ) of remanufactured parts will experience cycles of heating and cooling during the cladding operation, its properties will change and may be extremely different than that of the unaffected area of the base material. Hence, the study of HAZ of FV520B steel is essential. The laser cladding on FV520B stainless steel was conducted to investigate the evolutions of microstructure and mechanical property of HAZ. The microstructure of the HAZ was characterized by means of OM and SEM, and hardness distribution was measured. Thermo-simulation was carried out to analyze the continuous cooling transformation (CCT) diagram, which provides useful instructions to investigate the microstructure evolution of HAZ. Simulated HAZ specimens and its mechanical properties were obtained by Gleeble 3500 thermal/mechanical simulator and MTS 810 material testing system. The results indicate that, HAZ can be divided into four zones: semi-melton zone, precipitation dissolved zone, completely austenization zone and partially austenization zone. The microstructures of the HAZ are martensite, the grain grows and second phase particles dissolve in the areas near the fusion zone. Meanwhile, its martensite transformation start temperature lower, and hardness higher than that of the unaffected area of the base material. The maximum temperature of thermal cycle dominates the evolution of microstructure and property of HAZ. With the decrease of the maximum temperature, the solid-state transformation temperature, elongation and impact energy increase, and the hardness decrease. Thermal cycle have a little influence to the tensile strength of HAZ under the processing parameters in this study. It can be speculated that the reduction in impact toughness and elongation of the HAZ can be controlled by decreasing the scanning speed of cladding.

Key wordslaser cladding    heat-affected zone    martensitic stainless steel    structural transformation
收稿日期: 2015-09-18     
基金资助:国家重点基础研究发展计划项目2011CB010403和装备再制造技术国防科技重点实验室基金项目9140C85040314OC85353资助
图1  拉伸试样示意图
图2  FV520B激光熔覆热影响区形貌的OM像
图3  激光熔覆热影响区硬度
图4  锻造时效态FV520B钢在2种奥氏体化工艺下连续冷却转变曲线
图5  以不同速率冷却的Case I试样显微形貌的OM像
图6  以不同速率冷却的Case II试样显微形貌的OM像
图7  2种奥氏体化工艺试样对应的马氏体相变开始温度Ms及硬度
图8  FV520B钢及模拟热影响区试样的典型拉伸曲线
图9  FV520B钢及模拟热影响区试样的拉伸断口形貌
[1] Xu B S, Zhang W, Liu S C, Ma S N, Zhang Z X. Proc 15th European Maintenance Conference, Gothenburg, Sweden: Swedish Maintenance Society, 2000: 335
[2] Xu B S, Zhu S, Ma S N, Liu S C, Liang X B. China Surf Eng, 2003; 16(3): 1
[2] (徐滨士, 朱 胜, 马世宁, 刘世参, 梁秀兵.中国表面工程, 2003; 16(3): 1)
[3] Xu B S, Liu S C, Wang H D. J Cent?South?Univ Technol, 2005; 12(2): 1
[4] Xu B S, Liu S C, Shi P J. China Surf Eng, 2006; 19(1): 1
[4] (徐滨士, 刘世参, 史佩京. 中国表面工程, 2006; 19(1): 1)
[5] Sheng P S, Joshi V S. J Mater Process Technol, 1995; 53: 879
[6] Gunaraj V, Murugan N. J Mater Process Technol, 1999; 95: 246
[7] Xu Q D, Lin X, Song M H, Yang H O, Huang W D. Acta Metall Sin, 2013; 42: 605
[7] (徐庆东, 林 鑫, 宋梦华, 杨海欧, 黄卫东. 金属学报, 2013; 42: 605)
[8] Liu D S, Cheng B G, Luo M. Acta Metall Sin, 2011; 47: 1233
[8] (刘东升, 程丙贵, 罗 咪. 金属学报, 2011; 47: 1233)
[9] Chu Q L, Zhang M, Li J H. Eng Fail Anal, 2013; 34: 501
[10] Bussu G, Irving P E. Int J Fatigue, 2003; 25: 77
[11] Lambert-Perlade A, Gourgues A F, Pineau A. Acta Mater, 2004; 52: 2337
[12] Nie W J, Shang C J, You Y, Zhang X B. Acta Metall Sin, 2012; 48: 797
[12] (聂文金, 尚成嘉, 由 洋, 张晓兵. 金属学报, 2012; 48: 797)
[13] Yu S F, Qian B N, Guo X M. Acta Metall Sin, 2005; 41: 401
[13] (于少飞, 钱百年, 国旭明. 金属学报, 2005; 41: 401)
[14] Mohandas T, Reddy G M, Kumar B S. J Mater Process Technol, 1999; 88: 284
[15] Moeinifar S, Kokabi A H, Madaah Hosseini H R. J Mater Process Technol, 2011; 21: 368
[16] Sawada K, Hara T, Tabuchi M, Kimura M, Kubushiro K. Mater Charact, 2015; 101: 106
[17] Qiao G Y, Zhang K Q, Xiao F R. Heat Treat Met, 2000; (2): 31
[17] (乔桂英, 张克勤, 肖福仁. 金属热处理, 2000; (2): 31)
[18] Niu J, Dong J M, Fu Y H, Xue J. Heat Treat Met, 2007; 32(4): 30
[18] (牛 靖, 董俊明, 付永红, 薛 锦. 金属热处理, 2007; 32(4): 30)
[19] Qiao G Y, Xiao F R, Tan C X. Spec Steel, 1998; 19(6): 18
[19] (乔桂英, 肖福仁, 谭朝鑫. 特殊钢, 1998; 19(6): 18)
[20] Niu J, Dong J M, Xue J. Chin J Mech Eng, 2007; 43(12): 78
[20] (牛 靖, 董俊明, 薛 锦. 机械工程学报, 2007; 43(12): 78)
[21] Fang J X, Dong S Y, Xu B S, Wang Y J, He P, Xia D, Zhang Z H, Ren W B. Chin J Lasers, 2015; 42: 0503009
[21] (方金祥, 董世运, 徐滨士, 王玉江, 何 鹏, 夏 丹, 张智慧, 任维彬. 中国激光, 2015; 42: 0503009)
[22] Fang J X, Dong S Y, Wang Y J, Xu B S, Zhang Z H, Xia D, He P. Mater Des, 2015; 87: 807
[23] Francis J A,Stone H J,Kundu S,Bhadeshia H K D H,Rogge R B,Withers P J,Karlsson L. J Pressure Vessel Technol—Trans ASME, 2009; 131: 041401
[24] Ooi S W, Garnham J E, Ramjaun T I. Mater Des, 2014; 56: 773
[25] Bhadeshia H. Mater Sci Eng, 2004; A378: 34
[26] Wang W G, Huo L X, Zhang Y F, Wang D P. Chin J Mech Eng, 2002; 38: 65
[26] (王文光, 霍立兴, 张玉凤, 王东坡. 机械工程学报, 2002; 38: 65)
[1] 冯凯, 郭彦兵, 冯育磊, 姚成武, 朱彦彦, 张群莉, 李铸国. 激光熔覆高强韧铁基涂层精细组织调控与性能研究[J]. 金属学报, 2022, 58(4): 513-528.
[2] 王学, 李勇, 王家庆, 胡磊. 高温时效对T23钢粗晶热影响区显微组织及再热裂纹敏感性的影响[J]. 金属学报, 2021, 57(6): 736-748.
[3] 赵万新, 周正, 黄杰, 杨延格, 杜开平, 贺定勇. FeCrNiMo激光熔覆层组织与摩擦磨损行为[J]. 金属学报, 2021, 57(10): 1291-1298.
[4] 童文辉, 张新元, 李为轩, 刘玉坤, 李岩, 国旭明. 激光工艺参数对TiC增强钴基合金激光熔覆层组织及性能的影响[J]. 金属学报, 2020, 56(9): 1265-1274.
[5] 陆斌, 陈芙蓉, 智建国, 耿如明. 应用稀土氧化物冶金技术改善高强钢焊接性能[J]. 金属学报, 2020, 56(9): 1206-1216.
[6] 张煜, 娄丽艳, 徐庆龙, 李岩, 李长久, 李成新. 超高速激光熔覆镍基WC涂层的显微结构与耐磨性能[J]. 金属学报, 2020, 56(11): 1530-1540.
[7] 马宏驰, 杜翠薇, 刘智勇, 李永, 李晓刚. E690高强低合金钢焊接热影响区典型组织在含SO2海洋环境中的应力腐蚀行为对比研究[J]. 金属学报, 2019, 55(4): 469-479.
[8] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.
[9] 文明月, 董文超, 庞辉勇, 陆善平. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究[J]. 金属学报, 2018, 54(4): 501-511.
[10] 郭腾, 李洪涛, 蒋百灵, 邢益彬, 张新宇. 离子镀过程中基体“热影响区”的演变及其对镀层的影响[J]. 金属学报, 2018, 54(3): 463-469.
[11] 马也飞, 宋竹满, 张思倩, 陈立佳, 张广平. 小尺度CA6NM马氏体不锈钢样品疲劳性能评价研究[J]. 金属学报, 2018, 54(10): 1359-1367.
[12] 林英华, 袁莹, 王梁, 胡勇, 张群莉, 姚建华. 电磁复合场对Ni60合金凝固过程中显微组织和裂纹的影响[J]. 金属学报, 2018, 54(10): 1442-1450.
[13] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[14] 李学达,尚成嘉,韩昌柴,范玉然,孙建波. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响*[J]. 金属学报, 2016, 52(9): 1025-1035.
[15] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.