Please wait a minute...
金属学报  2014, Vol. 50 Issue (5): 531-539    DOI: 10.3724/SP.J.1037.2013.00709
  论文 本期目录 | 过刊浏览 |
低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响
田亚强1), 张宏军1), 陈连生1), 宋进英1), 徐勇1,2), 张士宏2)
1) 河北联合大学河北省现代冶金技术重点实验室, 唐山063009
2) 中国科学院金属研究所, 沈阳110016
EFFECT OF ALLOY ELEMENTS PARTITIONINGBEHAVIOR ON RETAINED AUSTENITE ANDMECHANICAL PROPERTY IN LOW CARBONHIGH STRENGTH STEEL
TIAN Yaqiang 1), ZHANG Hongjun 1), CHEN Liansheng 1), SONG Jinying 1), XU Yong 1, 2),
ZHANG Shihong 2)
1) Hebei Key Laboratory of Modern Metallurgy Technology, Hebei United University, Tangshan 063009
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(18013 KB)   HTML
摘要: 

采用双相区保温+奥氏体化淬火+低温退火的热处理工艺, 研究了合金元素配分行为对C-Si-Mn系高强钢微观组织和力学性能的影响. 结果表明, 在760 ℃随着保温时间的延长, 双相区中奥氏体相的体积分数逐渐增多直至达到饱和, 而铁素体向奥氏体扩散的Mn元素含量也逐渐增多直至在两相间达到化学势平衡, 后加热至930 ℃保温120 s, 再淬火至220 ℃, 配分过程中发生了C从马氏体向奥氏体中的扩散偏聚. 经该工艺处理后实验用钢的抗拉强度为1310 MPa, 延伸率可达12%, 强塑积达到15720 MPa·%, 相比传统淬火+碳配分工艺, 双相区保温+奥氏体化淬火+低温退火的热处理工艺过程中Mn配分和C配分共同作用能够显著提高钢中残余奥氏体的含量和稳定性, 从而提高高强钢的室温成形能力.

关键词 高强钢双相区保温Mn配分C配分残余奥氏体力学性能    
Abstract:The C content in high strength steel must be controlled at a lower level for the good weldability. However, the lower level of C content will reduce the C partitioning efficiency and influence the stability of retained austenite, which leads to the decrease of the product of tensile strength and elongation of high strength steel. A novel preparation mechanism of high strength steel is to employ some kind of substitutional alloying elements, for example Mn, instead of C to partitioning to enhance the austenitic stability, which would not remarkably reduce the weldability of the steel. One low alloy C-Si-Mn steel was used in present work. The Mn partitioning behavior and its effect on the stability of the retained austenite and the mechanical property were studied by means of intercritical annealing, subsequent austenitizing, then quenching and partitioning process (I&Q&P). The results show that in the process of intercritical annealing at 760 ℃, by extending the annealing time, austenite volume fraction increases gradually until it reaches the saturation, meanwhile the Mn partitioning behavior occurs and Mn content increases gradually from ferrite to austenite until it reaches the chemical potential balance in two phases. The sample is heated to 930 ℃ for 120 s, then rapidly quenching to 220 ℃, the carbon diffuses from martensite to austenite phase in the process of partitioning. After I&Q&P process, the tensile strength of experimental steel is 1310 MPa, elongation up to 12%, the product of strength and elongation up to more than 15000 MPa·%. The steel only contains a small amount of retained austenite by only C partitioning after traditional Q&P process, while the steel contains more Mn-rich retained austenite after I&Q&P process. Hence, the content and stability of retained austenite of steel can be improved significantly, which enhance the formability at room temperature.
Key wordshigh strength steel    intercritical annealing    Mn partitioning    C partitioning    retained austenite    mechanical property
收稿日期: 2013-11-07      出版日期: 2014-05-20
:  TG156  
基金资助:* 国家自然科学基金项目51254004和51304186及河北省自然科学基金项目E2014209191资助
Corresponding author: CHEN Liansheng, professor, Tel: (0315)2597151, E-mail: kyc@heuu.edu.cn   
作者简介: 陈连生, 男, 1968年生, 教授, 博士

引用本文:

田亚强, 张宏军, 陈连生, 宋进英, 徐勇, 张士宏. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响[J]. 金属学报, 2014, 50(5): 531-539.
TIAN Yaqiang , ZHANG Hongjun , CHEN Liansheng , SONG Jinying , XU Yong , ZHANG Shihong . EFFECT OF ALLOY ELEMENTS PARTITIONINGBEHAVIOR ON RETAINED AUSTENITE ANDMECHANICAL PROPERTY IN LOW CARBONHIGH STRENGTH STEEL. Acta Metall Sin, 2014, 50(5): 531-539.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2013.00709      或      http://www.ams.org.cn/CN/Y2014/V50/I5/531

[1] Hayami S, Furukawa T. Microalloying 75. New York: Union Carbide Corp, 1977: 311
[2] Raabe D, Ponge D, Dmitrieva O, Sander B. Scr Mater, 2009; 60: 1141
[3] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1992; 32: 1014
[4] Matsumura O, Sakuma Y, Takechi H. ISIJ Int, 1987; 27: 570
[5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 1993; 33: 775
[6] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319-321: 246
[7] Barnett M R. Mater Sci Eng, 2007; A464: 1
[8] Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007; 539-543: 4476
[9] Andrade H L, Akben M G, Jonas J J. Metall Trans, 1983; 14A: 1967
[10] Hashimoto S, Ikeda S, Sugimoto K I, Miyake S. ISIJ Int, 2004; 44: 1590
[11] Speer J G, Matlock D K, De Cooman B C, Schroch J G. Acta Mater, 2003; 51: 2611
[12] Edmonds D V, Rizzo F C, De Cooman B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[13] De Cooman B C, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 798
[14] Speer J G, Rizzo F C, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417
[15] Matlock D K, Br?utigam V E, Speer J G. Mater Sci Forum, 2003; 426: 1089
[16] Xu Z Y. Mater Sci Forum, 2007; 561-565: 2283
[17] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261
[18] Zhong N. PhD Dissertation, Shanghai Jiao Tong University, 2009(钟 宁. 上海交通大学博士学位论文, 2009)
[19] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008, 39A: 2586
[20] Dong X C, Zhang X, Chen Y Q. Iron Steel Vanadium Titanium, 2011; 32: 62(董现春, 张 熹, 陈延清. 钢铁钒钛, 2011, 32: 62)
[21] Zhu B K, Li S B, Zhou H, Yang P. Welding Joining, 2007; (4): 40(朱丙坤, 李少兵, 周 浩, 杨 澍. 焊接, 2007; (4): 40)
[22] Saleh M H, Prietner R. Mater Proc Technol, 2001; 113: 587
[23] Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K. ISIJ Int, 2011; 51: 818
[24] Lee S, Lee S J, De Cooman B C. Sci Mater, 2011; 65: 225
[25] Lee S J, Lee S, De Cooman B C. Sci Mater, 2011; 64: 649
[26] Krauss G. In: Rohatgi P K, Yust C S eds., Tribology of Composite Materials, Materials Park, Ohio: ASM International, 1990: 56
[27] Koistinen D P, Marburger R E. Acta Metall, 1959; 7: 59
[28] Fan X. Metallic X-ray Physics. Beijing: Mechanical Industry Press, 1989: 159(范 雄. 金属X射线学. 北京: 机械工业出版社, 1989: 159)
[1] 董虎林,包海萍,彭建洪. TiC含量对铁基复合材料力学性能及耐磨性能的影响[J]. 金属学报, 2019, 55(8): 1049-1057.
[2] 李玲,姚生莲,赵晓丽,杨佳佳,王野熹,王鲁宁. 阳极氧化法制备Zr-17Nb合金表面氧化物纳米管阵列及其性能研究[J]. 金属学报, 2019, 55(8): 1008-1018.
[3] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[4] 刘巧沐,黄顺洲,刘芳,杨艳,南宏强,张东,孙文儒. B含量对K417G合金凝固过程中组织演变和力学性能的影响[J]. 金属学报, 2019, 55(6): 720-728.
[5] 张婷,赵宇宏,陈利文,梁建权,李沐奚,侯华. 触变注射成形法制备石墨烯纳米片增强镁基复合材料[J]. 金属学报, 2019, 55(5): 638-646.
[6] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[7] 吕钊钊,祖宇飞,沙建军,鲜玉强,张伟,崔鼎,严从林. 含Cu界面层碳纤维增强铝基复合材料制备工艺及其力学性能研究[J]. 金属学报, 2019, 55(3): 317-324.
[8] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[9] 吴玉程. 面向等离子体W材料改善韧性的方法与机制[J]. 金属学报, 2019, 55(2): 171-180.
[10] 赵乃勤, 刘兴海, 蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报, 2019, 55(1): 1-15.
[11] 闵小华, 向力, 李明佳, 姚凯, 江村聪, 程从前, 土谷浩一. {332}<113>孪晶与等温ω相的组合对不同O含量Ti-15Mo合金力学性能的影响[J]. 金属学报, 2018, 54(9): 1262-1272.
[12] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[13] 杨祖坤, 张昌盛, 庞蓓蓓, 洪艳艳, 莫方杰, 刘昭, 孙光爱. 初始微结构对多晶金属Be宏观力学性能的影响[J]. 金属学报, 2018, 54(8): 1150-1156.
[14] 高飘, 魏恺文, 喻寒琛, 杨晶晶, 王泽敏, 曾晓雁. 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律[J]. 金属学报, 2018, 54(7): 999-1009.
[15] 时惠英, 杨超, 蒋百灵, 黄蓓, 王迪. 双脉冲磁控溅射峰值靶电流密度对TiN薄膜结构与力学性能的影响[J]. 金属学报, 2018, 54(6): 927-934.