Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 760-768    DOI: 10.11900/0412.1961.2016.00468
  本期目录 | 过刊浏览 |
1 中国科学技术大学化学与材料科学学院 合肥 2300262 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Phase-Field Modeling of Austenite-to-Ferrite Transformation in Fe-C-Mn Ternary Alloys
Jun ZHANG1,2,Wenxiong CHEN2,Chengwu ZHENG2(),Dianzhong LI2
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2800 KB)   HTML


关键词 相场法奥氏体铁素体Gibbs自由能耗散相变不完全    

The effect of Mn on the austenite-to-ferrite transformation has been widely studied by both physical models and experiments due to its technological importance for alloy design in steel industries. In recent years, an increasing interest of this issue is moved onto the effect of alloying element on the migrating interface during the austenite-to-ferrite transformation. For ternary Fe-C-Mn alloys, the interfacial condition is more complicated than that of binary Fe-C alloys in view of the large difference in the diffusivity between the interstitial and substitutional alloying elements. Generally speaking, there are two main concepts, i.e. the paraequilibrium model and the local-equilibrium model, which have been proposed to describe the phase transformation kinetics in ternary Fe-C-Mn alloys based on different assumptions about the diffusion of the substitutional elements. And many modeling attempts have been made to study the effect of Mn on the migration kinetics by using these theories. In this work, a multi-phase-field (MPF) model coupling with a Gibbs-energy dissipation model was developed to simulate the isothermal austenite-to-ferrite transformation in ternary Fe-C-Mn alloys. This model has considered the Mn diffusion inside the migrating interface in a physical manner and takes its effect on the transformation kinetics into account. Comparison simulations were made to analyze the difference in the transformation kinetics and ferrite morphologies with and without considering the energy dissipation at the moving interface. It shows that the incomplete transformation phenomenon does occur due to the Mn diffusion inside interface. The modified MPF model was then used to study the effect of Mn contents on the microstructures and kinetics of the phase transformations. It is found that the ferrite growth along the austenite/austenite boundaries is faster than that in the perpendicular direction. This difference is intensified with increasing the Mn concentration, which hence leads to the ferrite morphology changed from elliptical to flat alike. It also produces a slower transformation kinetics and a larger degree of the incomplete transformation when increasing the Mn concentration.

Key wordsphase-field method    austenite    ferrite    Gibbs-energy dissipation    incomplete transformation
收稿日期: 2016-10-21      出版日期: 2017-03-31


张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
Jun ZHANG,Wenxiong CHEN,Chengwu ZHENG,Dianzhong LI. Phase-Field Modeling of Austenite-to-Ferrite Transformation in Fe-C-Mn Ternary Alloys. Acta Metall Sin, 2017, 53(6): 760-768.

链接本文:      或

图1  相界面处Mn化学势的分布示意图
图2  γ→α相变过程中耗散自由能(ΔGdis)的变化
Parameter (unit) Value Ref.
σα,γ(Jm-2) 0.4 [20,31]
σγ,γ(Jm-2) 0.79 [31]
DintMn(cm2s-1) 0.5exp-247650/RT [20]
MCγ( m2molJ-1s-1) 1RT1.5×10-5exp-142000/RT [32]
MCα( m2molJ-1s-1) 1RT2.2×10-4exp-125000/RT [32]
Mp( mmolJ-1s-1) 0.5exp-140000/RT [32]
表1  模拟所采用的物理参数
图3  973 K等温时单个铁素体晶粒的生长过程
图4  973 K等温时铁素体晶粒的生长动力学
图5  相界面迁移过程中ΔGchem与ΔGdis的变化情况
图6  不同合金的奥氏体-铁素体化学驱动力(ΔGchem)与相变温度(T)的关系
图7  1043 K等温时不同合金相变过程中微观组织演化的模拟结果
图8  1043 K等温时不同合金相变过程中C浓度场演化的模拟结果
图9  不同合金在1043 K等温时的转变动力学
图10  不同Mn含量下相变不完全的转变程度
[1] Purdy G, ?gren J, Borgenstam A, et al.ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces[J]. Metall. Mater. Trans., 2011, 42A: 3703
[2] Christian J W.The Theory of Transformations in Metals and Alloys[M]. 3rd Ed., Oxford: Elsevier Science, 2002: 1
[3] Hillert M.Diffusion and interface control of reactions in alloys[J]. Metall. Trans., 1975, 6A: 5
[4] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[5] Hultgren A.Isothermal transformation of austenite[J]. Trans. Am. Soc. Met., 1947, 39: 915
[6] Hillert M, ?gren J.On the definitions of paraequilibrium and orthoequilibrium[J]. Scr. Mater., 2004, 50: 697
[7] Coates D E.Diffusion-controlled precipitate growth in ternary systems I[J]. Metall. Trans., 1972, 3: 1203
[8] Hillert M.Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite[J]. Scr. Mater., 2002, 46: 447
[9] Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
[10] Krielaart G P, Sietsma J, van der Zwaag S. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Mater. Sci. Eng., 1997, A237: 216
[11] Gamsjager E. Kinetics of the austenite-to-ferrite phase transformation——From the intrinsic to an effective interface mobility [J]. Mater. Sci. Forum, 2007, 539-543: 2570
[12] Purdy G R, Brechet Y J M. A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels[J]. Acta Metall. Mater., 1995, 43: 3763
[13] Hillert M, Sundman B.A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metall., 1976, 24: 731
[14] Hillert M.Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
[15] Hillert M, Odqvist J, ?gren J.Comparison between solute drag and dissipation of Gibbs energy by diffusion[J]. Scr. Mater., 2001, 45: 221
[16] Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[17] Zurob H S, Panahi D, Hutchinson C R, et al.Self-consistent model for planar ferrite growth in Fe-C-X alloys[J]. Metall. Mater. Trans., 2013, 44A: 3456
[18] Chen H, van der Zwaag S. A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe-C-M alloys[J]. Acta Mater., 2014, 72: 1
[19] Loginova I, Odqvist J, Amberg G, et al.The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys[J]. Acta Mater., 2003, 51: 1327
[20] Zhu B Q, Chen H, Militzer M.Phase-field modeling of cyclic phase transformations in low-carbon steels[J]. Comput. Mater. Sci., 2015, 108: 333
[21] Moelans N, Blanpain B, Wollants P.Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[J]. Phys. Rev., 2008, 78B: 024113
[22] Zaeem M A, El Kadiri H, Wang P T, et al.Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model[J]. Comput. Mater. Sci., 2011, 50: 2488
[23] Chang K, Moelans N.Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations[J]. Acta Mater., 2014, 64: 443
[24] Loginova I, ?gren J, Amberg G.On the formation of Widmanst?tten ferrite in binary Fe-C-phase-field approach[J]. Acta Mater., 2004, 52: 4055
[25] Mecozzi M G, Sietsma J, van der Zwaag S, et al. Analysis of the γ→α transformation in a C-Mn steel by phase-field modeling[J]. Metall. Mater. Trans., 2005, 36A: 2327
[26] Huang C J, Browne D J, McFadden S. A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels[J]. Acta Mater., 2006, 54: 11
[27] Moelans N.A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems[J]. Acta Mater., 2011, 59: 1077
[28] Zhang J, Zheng C W, Li D Z.Modeling of isothermal austenite to ferrite transformation in a Fe-C alloy by phase-field method[J]. Acta Metall. Sin., 2016, 52: 1449
[28] (张军, 郑成武, 李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程[J]. 金属学报, 2016, 52: 1449)
[29] Gustafson P.A thermodynamic evaluation of the C-Fe-W system[J]. Metall. Trans., 1987, 18A: 175
[30] Huang W M.A thermodynamic assessment of the Fe-Mn-C system[J]. Metall. Trans., 1990, 21A: 2115
[31] Savran V I.Austenite formation in C-Mn steel [D]. Delft: Delft University of Technology, 2009
[32] Zheng C W, Raabe D.Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Mater., 2013, 61: 5504
[33] Chen H, van der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages[J]. Acta Mater., 2013, 61: 1338
[1] 陈兴品,李文佳,任平,曹文全,刘庆. C含量对Fe-Mn-Al-C低密度钢组织和性能的影响[J]. 金属学报, 2019, 55(8): 951-957.
[2] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[3] 刘后龙,马明玉,刘玲玲,魏亮亮,陈礼清. 热轧板退火工艺对19Cr2Mo1W铁素体不锈钢织构与成形性能的影响[J]. 金属学报, 2019, 55(5): 566-574.
[4] 杜娟, 程晓行, 杨天南, 陈龙庆, Mompiou Frédéric, 张文征. 奥氏体析出相激发形核的原位TEM研究[J]. 金属学报, 2019, 55(4): 511-520.
[5] 田亚强,田耕,郑小平,陈连生,徐勇,张士宏. 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性[J]. 金属学报, 2019, 55(3): 332-340.
[6] 邵成伟, 惠卫军, 张永健, 赵晓丽, 翁宇庆. 一种新型高强度高塑性冷轧中锰钢的组织和力学性能[J]. 金属学报, 2019, 55(2): 191-201.
[7] 潘栋, 赵宇光, 徐晓峰, 王艺橦, 江文强, 鞠虹. 高能瞬时电脉冲处理对42CrMo钢组织与性能的影响[J]. 金属学报, 2018, 54(9): 1245-1252.
[8] 魏铖, 柯常波, 马海涛, 张新平. 基于序参量梯度的改进相场模型及对大尺度体系马氏体相变的模拟研究[J]. 金属学报, 2018, 54(8): 1204-1214.
[9] 胡宽辉, 毛新平, 周桂峰, 刘静, 王志奋. Si和Mn含量对超高强度热成形钢组织和性能的影响[J]. 金属学报, 2018, 54(8): 1105-1112.
[10] 赵晓丽, 张永健, 邵成伟, 惠卫军, 董瀚. 两相区退火处理冷轧0.1C-5Mn中锰钢的氢脆敏感性[J]. 金属学报, 2018, 54(7): 1031-1041.
[11] 阳锋, 罗海文, 董瀚. 退火温度对冷轧7Mn钢拉伸行为的影响及模拟研究[J]. 金属学报, 2018, 54(6): 859-867.
[12] 王锦程, 郭春文, 李俊杰, 王志军. 定向凝固晶粒竞争生长的研究进展[J]. 金属学报, 2018, 54(5): 657-668.
[13] 陈浩, 张璁雨, 朱加宁, 杨泽南, 丁然, 张弛, 杨志刚. 奥氏体/铁素体界面迁移与元素配分的研究进展[J]. 金属学报, 2018, 54(2): 217-227.
[14] 胡国栋, 王培, 李殿中, 李依依. 新型25Cr-20Ni奥氏体耐热不锈钢750 ℃持久实验过程中析出相演变[J]. 金属学报, 2018, 54(11): 1705-1714.
[15] 秦凤明, 李亚杰, 赵晓东, 何文武, 陈慧琴. 含N量对Mn18Cr18N奥氏体不锈钢的析出行为及力学性能的影响[J]. 金属学报, 2018, 54(1): 55-64.