Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 760-768    DOI: 10.11900/0412.1961.2016.00468
  本期目录 | 过刊浏览 |
1 中国科学技术大学化学与材料科学学院 合肥 2300262 中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
Phase-Field Modeling of Austenite-to-Ferrite Transformation in Fe-C-Mn Ternary Alloys
Jun ZHANG1,2,Wenxiong CHEN2,Chengwu ZHENG2(),Dianzhong LI2
1 School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(2800 KB)   HTML


关键词 相场法奥氏体铁素体Gibbs自由能耗散相变不完全    

The effect of Mn on the austenite-to-ferrite transformation has been widely studied by both physical models and experiments due to its technological importance for alloy design in steel industries. In recent years, an increasing interest of this issue is moved onto the effect of alloying element on the migrating interface during the austenite-to-ferrite transformation. For ternary Fe-C-Mn alloys, the interfacial condition is more complicated than that of binary Fe-C alloys in view of the large difference in the diffusivity between the interstitial and substitutional alloying elements. Generally speaking, there are two main concepts, i.e. the paraequilibrium model and the local-equilibrium model, which have been proposed to describe the phase transformation kinetics in ternary Fe-C-Mn alloys based on different assumptions about the diffusion of the substitutional elements. And many modeling attempts have been made to study the effect of Mn on the migration kinetics by using these theories. In this work, a multi-phase-field (MPF) model coupling with a Gibbs-energy dissipation model was developed to simulate the isothermal austenite-to-ferrite transformation in ternary Fe-C-Mn alloys. This model has considered the Mn diffusion inside the migrating interface in a physical manner and takes its effect on the transformation kinetics into account. Comparison simulations were made to analyze the difference in the transformation kinetics and ferrite morphologies with and without considering the energy dissipation at the moving interface. It shows that the incomplete transformation phenomenon does occur due to the Mn diffusion inside interface. The modified MPF model was then used to study the effect of Mn contents on the microstructures and kinetics of the phase transformations. It is found that the ferrite growth along the austenite/austenite boundaries is faster than that in the perpendicular direction. This difference is intensified with increasing the Mn concentration, which hence leads to the ferrite morphology changed from elliptical to flat alike. It also produces a slower transformation kinetics and a larger degree of the incomplete transformation when increasing the Mn concentration.

Key wordsphase-field method    austenite    ferrite    Gibbs-energy dissipation    incomplete transformation
收稿日期: 2016-10-21      出版日期: 2017-03-31


张军,陈文雄,郑成武,李殿中. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟[J]. 金属学报, 2017, 53(6): 760-768.
Jun ZHANG,Wenxiong CHEN,Chengwu ZHENG,Dianzhong LI. Phase-Field Modeling of Austenite-to-Ferrite Transformation in Fe-C-Mn Ternary Alloys. Acta Metall, 2017, 53(6): 760-768.

链接本文:      或

图1  相界面处Mn化学势的分布示意图
图2  γ→α相变过程中耗散自由能(ΔGdis)的变化
Parameter (unit) Value Ref.
σα,γ(Jm-2) 0.4 [20,31]
σγ,γ(Jm-2) 0.79 [31]
DintMn(cm2s-1) 0.5exp-247650/RT [20]
MCγ( m2molJ-1s-1) 1RT1.5×10-5exp-142000/RT [32]
MCα( m2molJ-1s-1) 1RT2.2×10-4exp-125000/RT [32]
Mp( mmolJ-1s-1) 0.5exp-140000/RT [32]
表1  模拟所采用的物理参数
图3  973 K等温时单个铁素体晶粒的生长过程
图4  973 K等温时铁素体晶粒的生长动力学
图5  相界面迁移过程中ΔGchem与ΔGdis的变化情况
图6  不同合金的奥氏体-铁素体化学驱动力(ΔGchem)与相变温度(T)的关系
图7  1043 K等温时不同合金相变过程中微观组织演化的模拟结果
图8  1043 K等温时不同合金相变过程中C浓度场演化的模拟结果
图9  不同合金在1043 K等温时的转变动力学
图10  不同Mn含量下相变不完全的转变程度
[1] Purdy G, ?gren J, Borgenstam A, et al.ALEMI: A ten-year history of discussions of alloying-element interactions with migrating interfaces[J]. Metall. Mater. Trans., 2011, 42A: 3703
[2] Christian J W.The Theory of Transformations in Metals and Alloys[M]. 3rd Ed., Oxford: Elsevier Science, 2002: 1
[3] Hillert M.Diffusion and interface control of reactions in alloys[J]. Metall. Trans., 1975, 6A: 5
[4] Zener C.Theory of growth of spherical precipitates from solid solution[J]. J. Appl. Phys., 1949, 20: 950
[5] Hultgren A.Isothermal transformation of austenite[J]. Trans. Am. Soc. Met., 1947, 39: 915
[6] Hillert M, ?gren J.On the definitions of paraequilibrium and orthoequilibrium[J]. Scr. Mater., 2004, 50: 697
[7] Coates D E.Diffusion-controlled precipitate growth in ternary systems I[J]. Metall. Trans., 1972, 3: 1203
[8] Hillert M.Nature of local equilibrium at the interface in the growth of ferrite from alloyed austenite[J]. Scr. Mater., 2002, 46: 447
[9] Sietsma J, van der Zwaag S. A concise model for mixed-mode phase transformations in the solid state[J]. Acta Mater., 2004, 52: 4143
[10] Krielaart G P, Sietsma J, van der Zwaag S. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Mater. Sci. Eng., 1997, A237: 216
[11] Gamsjager E. Kinetics of the austenite-to-ferrite phase transformation——From the intrinsic to an effective interface mobility [J]. Mater. Sci. Forum, 2007, 539-543: 2570
[12] Purdy G R, Brechet Y J M. A solute drag treatment of the effects of alloying elements on the rate of the proeutectoid ferrite transformation in steels[J]. Acta Metall. Mater., 1995, 43: 3763
[13] Hillert M, Sundman B.A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys[J]. Acta Metall., 1976, 24: 731
[14] Hillert M.Solute drag, solute trapping and diffusional dissipation of Gibbs energy[J]. Acta Mater., 1999, 47: 4481
[15] Hillert M, Odqvist J, ?gren J.Comparison between solute drag and dissipation of Gibbs energy by diffusion[J]. Scr. Mater., 2001, 45: 221
[16] Enomoto M.Influence of solute drag on the growth of proeutectoid ferrite in Fe-C-Mn alloy[J]. Acta Mater., 1999, 47: 3533
[17] Zurob H S, Panahi D, Hutchinson C R, et al.Self-consistent model for planar ferrite growth in Fe-C-X alloys[J]. Metall. Mater. Trans., 2013, 44A: 3456
[18] Chen H, van der Zwaag S. A general mixed-mode model for the austenite-to-ferrite transformation kinetics in Fe-C-M alloys[J]. Acta Mater., 2014, 72: 1
[19] Loginova I, Odqvist J, Amberg G, et al.The phase-field approach and solute drag modeling of the transition to massive γ→α transformation in binary Fe-C alloys[J]. Acta Mater., 2003, 51: 1327
[20] Zhu B Q, Chen H, Militzer M.Phase-field modeling of cyclic phase transformations in low-carbon steels[J]. Comput. Mater. Sci., 2015, 108: 333
[21] Moelans N, Blanpain B, Wollants P.Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems[J]. Phys. Rev., 2008, 78B: 024113
[22] Zaeem M A, El Kadiri H, Wang P T, et al.Investigating the effects of grain boundary energy anisotropy and second-phase particles on grain growth using a phase-field model[J]. Comput. Mater. Sci., 2011, 50: 2488
[23] Chang K, Moelans N.Effect of grain boundary energy anisotropy on highly textured grain structures studied by phase-field simulations[J]. Acta Mater., 2014, 64: 443
[24] Loginova I, ?gren J, Amberg G.On the formation of Widmanst?tten ferrite in binary Fe-C-phase-field approach[J]. Acta Mater., 2004, 52: 4055
[25] Mecozzi M G, Sietsma J, van der Zwaag S, et al. Analysis of the γ→α transformation in a C-Mn steel by phase-field modeling[J]. Metall. Mater. Trans., 2005, 36A: 2327
[26] Huang C J, Browne D J, McFadden S. A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels[J]. Acta Mater., 2006, 54: 11
[27] Moelans N.A quantitative and thermodynamically consistent phase-field interpolation function for multi-phase systems[J]. Acta Mater., 2011, 59: 1077
[28] Zhang J, Zheng C W, Li D Z.Modeling of isothermal austenite to ferrite transformation in a Fe-C alloy by phase-field method[J]. Acta Metall. Sin., 2016, 52: 1449
[28] (张军, 郑成武, 李殿中. 相场法模拟Fe-C合金中奥氏体-铁素体等温相变过程[J]. 金属学报, 2016, 52: 1449)
[29] Gustafson P.A thermodynamic evaluation of the C-Fe-W system[J]. Metall. Trans., 1987, 18A: 175
[30] Huang W M.A thermodynamic assessment of the Fe-Mn-C system[J]. Metall. Trans., 1990, 21A: 2115
[31] Savran V I.Austenite formation in C-Mn steel [D]. Delft: Delft University of Technology, 2009
[32] Zheng C W, Raabe D.Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Mater., 2013, 61: 5504
[33] Chen H, van der Zwaag S. Analysis of ferrite growth retardation induced by local Mn enrichment in austenite created by prior interface passages[J]. Acta Mater., 2013, 61: 1338
[1] 张银辉, 冯强. W对新型Nb稳定化奥氏体耐热铸钢1000 ℃蠕变行为的影响[J]. 金属学报, 2017, 53(9): 1025-1037.
[2] 王猛, 刘振宇, 李成刚. 轧后超快冷及亚温淬火对5%Ni钢微观组织与低温韧性的影响机理[J]. 金属学报, 2017, 53(8): 947-956.
[3] 李克俭,蔡志鹏,吴瑶,潘际銮. FB2马氏体耐热钢在焊接热作用下奥氏体相变过程研究[J]. 金属学报, 2017, 53(7): 778-788.
[4] 董利明,杨莉,戴军,张宇,王学林,尚成嘉. Mn、Ni、Mo含量对K65热煨弯管焊缝组织转变和低温韧性的影响[J]. 金属学报, 2017, 53(6): 657-668.
[5] 王大伟,修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响[J]. 金属学报, 2017, 53(5): 567-574.
[6] 陈思含,梁田,张龙,马颖澈,刘政军,刘奎. 6%Si高硅奥氏体不锈钢固溶处理过程中bcc相的演变机制研究[J]. 金属学报, 2017, 53(4): 397-405.
[7] 黄龙,邓想涛,刘佳,王昭东. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系[J]. 金属学报, 2017, 53(3): 316-324.
[8] 张晓嵩,徐勇,张士宏,程明,赵永好,唐巧生,丁月霞. 塑性变形及固溶处理对奥氏体不锈钢晶间腐蚀性能的协同作用研究[J]. 金属学报, 2017, 53(3): 335-344.
[9] 王晨充,张弛,杨志刚,苏杰,翁宇庆. 高Co-Ni二次硬化钢的设计准则与时效工艺分析[J]. 金属学报, 2017, 53(2): 175-182.
[10] 桂晓露,张宝祥,高古辉,赵平,白秉哲,翁宇庆. Q-P-T处理贝氏体/马氏体复相高强钢疲劳断裂特性研究*[J]. 金属学报, 2016, 52(9): 1036-1044.
[11] 史金涛,侯陇刚,左锦荣,卢林,崔华,张济山. 304奥氏体不锈钢超低温轧制变形诱发马氏体转变的定量分析及组织表征*[J]. 金属学报, 2016, 52(8): 945-955.
[12] 宋峰雨,李艳梅,王平,朱伏先. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响*[J]. 金属学报, 2016, 52(7): 890-896.
[13] 王学林,董利明,杨玮玮,张宇,王学敏,尚成嘉. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响*[J]. 金属学报, 2016, 52(6): 649-660.
[14] 张银辉,LIMei,GODLEWSKILarryA,ZINDELJacobW,冯强. N对汽车发动机用新型奥氏体耐热铸钢1000 ℃蠕变性能的影响*[J]. 金属学报, 2016, 52(6): 661-671.
[15] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.