Please wait a minute...
金属学报  2017, Vol. 53 Issue (6): 726-732    DOI: 10.11900/0412.1961.2016.00402
  本期目录 | 过刊浏览 |
北京航空航天大学材料科学与工程学院 北京100191
Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets
Shaoting GONG,Chengbao JIANG,Tianli ZHANG()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(1989 KB)   HTML

制备了在500 ℃下矫顽力为603.99 kA/m,最大磁能积为87.30 kJ/m3的高温磁体。研究发现,在室温下,Fe含量较高的SmCo基磁体矫顽力较大,而高温下Fe含量高的磁体矫顽力较小。对磁体的微观形貌、相组成及磁体胞壁胞内成分进行分析,结果表明,随Fe含量升高,胞尺寸变大,1:5H相含量减少,胞壁相中Cu含量及胞内相中Fe含量升高。Fe和Cu元素在胞壁和胞内两相中含量的改变,导致了室温及高温两相畴壁能差的改变,从而引起了矫顽力的变化。

关键词 SmCo磁体Fe含量矫顽力微观结构    

High-temperature permanent magnets have an important application in the aerospace and other high-tech fields, among which 2:17-type SmCo magnets have become the first choice for high-temperature permanent magnets due to the strong magnetic anisotropy and high Curie temperature. Although there are studies on the effect of Fe on the remanence and coercivity, the role that Fe plays on coercivity mechanism of SmCo magnets is still unclear. In this work, Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16, z=6.90 and 7.40) magnets are prepared and the magnetic properties under different temperatures are investigated. The magnets with an intrinsic coercivity of 603.99 kA/m and a maximum energy product of 87.30 kJ/m3 at 500 ℃ are obtained. It is revealed that at room temperature the coercivity of the magnets increases with increasing Fe content, however, at 500 ℃ the coercivity shows an opposite dependency on Fe content. Moreover, the effect of Fe on coercivity is more obvious at low z value. The phase structure and composition analyses were characterized by XRD and TEM. The results show that with the increase of Fe content, the size of the 2:17R cell phase increases, the volume ratio of cell boundary 1:5H phase decreases, and furthermore, both Fe content in the 2:17R phase and Cu content in the 1:5H phase increase. The variations of Fe and Cu contents in both phases lead to the change of the domain wall energy difference. With the increase of Cu content of 1:5H phase, the domain wall energy of 1:5H phase (γ1:5) drops faster at room temperature, the coercivity is determined by γ2:17-γ1:5, so the coercivity increases with increasing Fe content. While at 500 ℃, due to γ1:5 at its Curie temperature, the coercivity is mainly determined by the domain wall energy of 2:17R phase (γ2:17), which decreases with increasing Fe content. The increase of Fe content at the low z value results in a smaller growth of cell size, which leads to a more significant change in coercivity.

Key wordsSmCo magnet    Fe content    coercivity    microstructure
收稿日期: 2016-09-08      出版日期: 2017-02-24


巩劭廷, 蒋成保, 张天丽. Fe对SmCo基高温永磁体微观结构及矫顽力的影响[J]. 金属学报, 2017, 53(6): 726-732.
Shaoting GONG, Chengbao JIANG, Tianli ZHANG. Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets. Acta Metall, 2017, 53(6): 726-732.

链接本文:      或

图1  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.16、z=6.90)永磁体在不同温度下的退磁曲线
图2  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16、z=6.90和7.40)永磁体矫顽力随温度变化曲线
图3  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体样品的XRD谱
Temperature Hcj / (kAm-1) Br / T (BH)m / (kJm-3)
RT 2581.49 0.91 168.39
500 ℃ 603.99 0.70 87.30
表1  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.16、z=6.90)永磁体室温及500 ℃下的永磁性能
图4  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体XRD分峰拟合图谱
图5  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体的TEM像
图6  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体两相成分对比
Atomic fraction Cell length
Cell width
Mass fraction
of 1:5H phase
Volume fraction
of 1:5H phase
x=0.10, z=6.90 82.83 63.69 0.23 0.38
x=0.16, z=6.90 109.96 77.05 0.15 0.29
x=0.10, z=7.40 105.08 85.76 0.15 0.32
x=0.16, z=7.40 185.95 144.46 0.05 0.19
表2  Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10和0.16、z=6.90和7.40)永磁体样品由XRD数据计算所得的1:5H相的质量分数及由TEM像计算所得胞尺寸和1:5H相的体积分数
[1] Gutfleisch O, Müller K H, Khlopkov K, et al.Evolution of magnetic domain structures and coercivity in high-performance SmCo 2: 17-type permanent magnets[J]. Acta Mater., 2006, 54: 997
[2] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[3] Horiuchi Y, Hagiwara M, Okamoto K, et al.Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet[J]. IEEE Trans. Magn., 2013, 49: 3221
[4] Zhang T L, Liu H Y, Liu J H, et al.2:17-type SmCo quasi-single-crystal high temperature magnets[J]. Appl. Phys. Lett., 2015, 106: 162403
[5] Wang Q, Jiang C B.Study on SmCo permanent magnets under 350 ℃ moderate temperatures[J]. Acta Metall. Sin., 2011, 47: 1605
[5] (王倩, 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47: 1605)
[6] Guo Z H, Li W.Room- and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30) sintered magnets[J]. Acta Metall. Sin., 2002, 38: 866
[6] (郭朝晖, 李卫. Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30)烧结永磁体的磁性及其高温特性[J]. 金属学报, 2002, 38: 866)
[7] Liu J F, Ding Y, Zhang Y, et al.New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 ℃[J]. J. Appl. Phys., 1999, 85: 5660
[8] Panagiotopoulos I, Matthias T, Niarchos D, et al. Melt-spun Sm (Co, Fe, Cu, Zr)z magnets for high-temperature applications [J]. J. Magn. Magn. Mater., 2002, 242-245: 1304
[9] Zhang T L, Liu H Y, Ma Z H, et al.Single crystal growth and magnetic properties of 2:17-type SmCo magnets[J]. J. Alloys Compd., 2015, 637: 253
[10] Wang G J, Zheng L, Jiang C B.Magnetic domain structure and temperature dependence of coercivity in Sm (CobalFe0.1Cu0.1Zr0.033)z (z=6.8, 7.4) magnets[J]. J. Magn. Magn. Mater., 2013, 343: 173
[11] Li L Y, Yi J H, Huang B Y, et al.Microstructure and magnetic properties of Sm2Co17-based high temperature permanent magnets[J]. Acta Metall. Sin., 2005, 41: 791
[11] (李丽娅, 易健宏, 黄伯云等. Sm2Co17基高温稀土永磁材料的显微结构与磁性[J]. 金属学报, 2005, 41: 791)
[12] Kronmüller H, Goll D.Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys[J]. Scr. Mater., 2002, 47: 545
[13] Xiong X Y, Ohkubo T, Koyama T, et al.The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Mater., 2004, 52: 737
[14] Liu J F, Zhang Y, Hadjipanayis G C.High-temperature magnetic properties and microstructural analysis of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Magn. Magn. Mater., 1999, 202: 69
[15] Wang G J, Jiang C B.The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x= 0.07, 0.10, 0.13) high temperature permanent magnets[J]. J. Appl. Phys., 2012, 112: 033909
[16] Liu J F, Chui T, Dimitrov D, et al.Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials[J]. Appl. Phys. Lett., 1998, 73: 3007
[17] Tang W, Zhang Y, Gabay A M, et al. Anomalous temperature dependence of coercivity in rare earth cobalt magnets [J]. J. Magn. Magn. Mater., 2002, 242-245: 1335
[18] Tang W, Zhang Y, Hadjipanayis G C, et al.Influence of Zr and Cu content on the microstructure and coercivity in Sm(CobalFe0.1CuyZrx)8.5 magnets[J]. J. Appl. Phys., 2000, 87: 5308
[19] Chen C H, Walmer M S, Walmer M H.Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ? 400 ℃[J]. J. Appl. Phys., 1998, 83: 6706
[20] Guo Z H, Pan W, Li W.Sm(Co, Fe, Cu, Zr)z sintered magnets with a maximum operating temperature of 500 ℃[J]. J. Magn. Magn. Mater., 2006, 303: e396
[21] Liu J F, Ding Y, Hadjipanayis G C.Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Appl. Phys., 1999, 85: 1670
[22] Wang F Z.Modern Methods for Material Analysis [M]. Beijing: Beijing Institute of Technology Press, 2006: 74
[22] (王富耻. 材料现代分析测试方法 [M]. 北京: 北京理工大学出版社, 2006: 74)
[23] Sun T D.A model on the coercivity of the hardened 2-17 rare earth-cobalt permanent magnets[J]. J. Appl. Phys., 1981, 52: 2532
[24] Lectard E, Allibert C H, Ballou R.Saturation magnetization and anisotropy fields in the Sm(Co1-xCux)5 phases[J]. J. Appl. Phys., 1994, 75: 6277
[25] Miyazaki T, Takahashi M, Yang X B, et al.Formation of metastable compounds and magnetic properties in rapidly quenched (Fe1-xCox)5Sm and (Fe1-xCox)7Sm2 alloy systems[J]. J. Appl. Phys., 1988, 64: 5974
[26] Goll D, Kronmüller H, Stadelmaier H H.Micromagnetism and the microstructure of high-temperature permanent magnets[J]. J. Appl. Phys., 2004, 96: 6534
[1] 李敏, 刘静, 姜庆伟. 退火温度对ARB-Cu室温拉伸断裂行为的影响[J]. 金属学报, 2017, 53(8): 1001-1010.
[2] 董丹,蒋百灵,郭萌,杨超. 碳基非晶镀层的纳米晶诱发机理及其摩擦学性能研究[J]. 金属学报, 2017, 53(7): 879-887.
[3] 明洪亮,张志明,王俭秋,韩恩厚,苏明星. 国产核电安全端异种金属焊接件的微观结构及局部性能研究[J]. 金属学报, 2017, 53(1): 57-69.
[4] 楼白杨,王宇星. Mo含量对CrMoAlN薄膜微观结构和摩擦磨损性能的影响*[J]. 金属学报, 2016, 52(6): 727-733.
[5] 李维丹,谭晓华,任科智,刘洁,徐晖. Nd2Fe14B/α-Fe系纳米晶复合永磁合金的磁黏滞行为及其交互作用*[J]. 金属学报, 2016, 52(5): 561-566.
[6] 申造宇,何利民,黄光宏,牟仁德,顾金旺,刘维众. TiAl/Ti3Al超薄多层复合材料的微观结构与力学性能*[J]. 金属学报, 2016, 52(12): 1579-1585.
[7] 邓洁,马佳伟,许以阳,沈耀. 马氏体的分布对双相钢微观变形行为和力学性能的影响[J]. 金属学报, 2015, 51(9): 1092-1100.
[8] 张志明, 王俭秋, 韩恩厚, 柯伟. 电解抛光态690TT合金在顺序溶氢/溶氧的高温高压水中表面氧化膜结构分析[J]. 金属学报, 2015, 51(1): 85-92.
[9] 周雪峰, 方峰, 涂益友, 蒋建清, 徐辉霞, 朱旺龙. Al对M2高速钢凝固组织的影响*[J]. 金属学报, 2014, 50(7): 769-776.
[10] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[11] 安祥海, 吴世丁, 张哲峰. 层错能对纳米晶Cu-Al合金微观结构、拉伸及疲劳性能的影响*[J]. 金属学报, 2014, 50(2): 191-201.
[12] 平德海,殷匠,刘文庆,宿彦京,戎利建,赵新青. 低合金马氏体钢中的ω[J]. 金属学报, 2013, 49(7): 769-774.
[13] 向红亮 范金春 刘东 郭培培. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响 I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088.
[14] 时惠英 龙艳妮 蒋百灵 陈迪春. 打底层对铝合金表面GLC镀层组织和摩擦学特性的影响[J]. 金属学报, 2012, 48(8): 983-988.
[15] 杨沐鑫 杨钢 刘正东 杜习乾 黄崇湘. 等径转角挤压及退火后0Cr13铁素体不锈钢的微观结构和力学性能[J]. 金属学报, 2012, 48(12): 1422-1430.