Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 723-728    DOI:
论文 Current Issue | Archive | Adv Search |
INTERFACIAL STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINIUM FOAM JOINTS FLUXLESS--SOLDERED WITH Zn--Al--Cu BASE ALLOY
WANG Hui 1;2; HE Siyuan 3; CHU Xuming 1;2; HE Deping 2
1. School of Materials Science and Engineering; Southeast University; Nanjing 211189
2. Jiangsu Key Laboratory of Advanced Metallic Materials; Nanjing 210018
3. School of Biolongical Science and Medical Engineering; Southeast University; Nanjing 210096
Cite this article: 

WANG Hui HE Siyuan CHU Xuming HE Deping . INTERFACIAL STRUCTURE AND MECHANICAL PROPERTIES OF ALUMINIUM FOAM JOINTS FLUXLESS--SOLDERED WITH Zn--Al--Cu BASE ALLOY. Acta Metall Sin, 2009, 45(6): 723-728.

Download:  PDF(1812KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al foam is a structural metal in which gas bubbles are separated by thin Al cell--walls, and exhibits a unique combination of functional properties mainly derived from their cellular structure. Joining is one of important considerable secondary processes that are required for use of work pieces made from Al foam or manufacture of large size Al foam plate. Almost all of the current joining methods have some problems in corrosion resistance, fatigue tolerance, formation of weld and mechanical properties. The joint is further complicated by various cellular structure characteristics that can have a significant impact on the joining process and mechanical properties of the joints. With Zn--based alloy as filler metal, a fluxless soldering method for joining Al foams with porosities of 74.7%---91.6% is proposed. The microstructure of the soldered interfacial region, elemental distributions and phase identification were determined by OM, SEM, EDS and XRD. The tensile and shear strengths of soldered joints, and the relationship between joint bonding strength and porosity were also investigated. The results show that the joining method does not change the cellular structure near the soldered joint, but a dense soldering seam layer is formed. The soldered region consists of Al(Zn) and Zn(Al) solid solutions, Cu4Zn and MgMnO3. Major elements of the filler alloy and bases easily diffuse  into each other. The tensile strength of the joints is close to that of the Al foam base, and the shear strength of joint is higher than that of Al foam. The strengths of joints decrease with the increase of Al foam porosity.

Key words:  Zn--Al--Cu base alloy      fluxless soldering      Al foam      interfacial structure      mechanical property     
Received:  05 November 2008     
ZTFLH: 

TG457.14

 
  TF125.6

 
Fund: 

Supported by National Basic Research Program of China (No.2006CB601201) and Key Program of National Natural Science Foundation of China
(No.50231010)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/723

[1] Degischer H P, Kriszi B. Handbook of Cellular Metals:Production, Processing, Applications. Weinheim: Wiley–VCH Verlag GmbH, 2002: 71
[2] Ashby M F, Evans A, Fleck N A. Metals Foams: a Design Guide. Boston, MA: Butterworth Heinemann, 2000: 3
[3] Ashby M F, Lu T J. Sci China, 2003; 46B: 521
[4] Gibson L J, Ashby M F. Cellular Solids: Structure & Properties. 2nd ed., Cambridge: Cambridge University Press, 1997: 510
[5] Haferkamp H, Ostendorf A, Goede M. In: Banhart J, Ashby M F, Fleck N A eds., Cellular Metals and Metal Foaming Technology, Verlag MIT, Bremen, 2001: 479
[6] Pogibenko A G, Konkevich V Y, Arbuzova L A. Weld Int, 2001; 15: 312
[7] Haferkamp H, Bunte J, Herzog D, Ostendorf A. Sci Technol Weld Join, 2004; 9(1): 65
[8] Born C, Kuchert H, Wagner G, Eifler D. Adv Eng Mater, 2003; 5(11): 121
[9] Kitazono K, Kitajima A, Sato E, Matsushita J, Kuribayashi K. Mater Sci Eng, 2002; A327: 128
[10] Matthes K J, Lang H. In: Banhart J, Ashby M F, Fleck N A eds., Cellular Metals and Metal Foaming Technology, Verlag MIT, Bremen, 2001: 501
[11] Wang H, He D P, Chu X M, He S Y. Trans China Weld Inst, 2008: 29(10): 1
(王 辉, 何德坪, 褚旭明, 何思渊. 焊接学报, 2008; 29(10): 1)
[12] Liu L M, Tan J H, Liu X J. Mater Lett, 2007; 61: 2373
[13] LÜ S X, Yu Z H, Xu Z W, Yan J C, Yang S Q, Wu L. Trans China Weld Inst, 2001; 22(4): 73
(吕世雄, 于治水, 许志武, 闫久春, 杨士勤, 吴林. 焊接学报, 2001; 22(4): 73)
[14] Xu H B, Yan J C, Yang S Q. Chin J Mech Eng, 2005;41(7): 152
(许惠斌, 闫久春, 杨士勤. 机械工程学报, 2005; 41(7): 152)
[15] He D P,Wang H, He S Y. China Pat., CN101264538, 2008
(何德坪, 王 辉, 何思渊. 中国专利 CN101264538, 2008)
[16] Qiu X M, Yin S Q, Sun D Q, Chen Z M. Chin J Nonferous Met, 2001; 11: 1017
(邱小明, 殷世强, 孙大谦, 陈智明. 中国有色金属学报, 2001; 11: 1017)
[17] Nagasaki S, Hirabayashi M. Binary Alloy Phase–Diagrams. Tokyo: AGNE Gijutsu Center, 2001: 29, 49,146
(长崎诚三, 平林 真. 二元合金状态图集. 东京: ァグネ技术セソタ一, 2001: 29, 49, 146)
[18] Xu Z Y. Thermodynamics of the Metal Materials. Beijing: Science Press, 1981: 110
(徐祖耀. 金属材料热力学. 北京: 科学出版社, 1981: 110)
[19] Zheng M J, He D P. Chin J Mater Res, 2002; 16: 473
(郑明军, 何德坪. 材料研究学报, 2002; 16: 473)
[20] Chen C, Fleck N A, Lu T J. J Mech Phys Solids, 2001; 49:231
[21] He D P. Ultralight Porous Metals. Beijing: Science Press,2008: 196, 205
(何德坪. 超轻多孔金属. 北京: 科学出版社, 2008: 196, 205)

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!