Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 717-722    DOI:
论文 Current Issue | Archive | Adv Search |
INFLUENCES OF ADDITIONS OF Nb, Ti AND Cu ON DAMPING CAPACITY AND CORROSION RESISTANCE OF Fe--13Cr--2.5Mo ALLOY
HU Xiaofeng; LI Xiuyan; ZHANG Bo; RONG Lijian; LI Yiyi
Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

HU Xiaofeng LI Xiuyan ZHANG Bo RONG Lijian LI Yiyi. INFLUENCES OF ADDITIONS OF Nb, Ti AND Cu ON DAMPING CAPACITY AND CORROSION RESISTANCE OF Fe--13Cr--2.5Mo ALLOY. Acta Metall Sin, 2009, 45(6): 717-722.

Download:  PDF(5429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe--Cr base high damping alloys (HDA), as the typical ferromagnetic type HDA, have been well investigated in a long history due to their merits in
low cost and superior workability like steels, and are widely applied for suppression of noise or vibration in many industrial fields. The  agnetoelastic
coupling in ferromagnetic materials is well known to be an important source of internal friction, which could produce a high damping capacity. The
damping mechanism has been mainly attributed to the stress--induced irreversible movements of magnetic domain walls. Fe--(12%---16%)Cr--(2%---4%)Mo (mass fraction) base alloys were found to possess higher damping capacity and better corrosion resistance. As well known Nb, Ti and Cu can improve corrosion resistance of stainless steel. In the present work, dynamic mechanical analyzer (DMA) and field--emission scanning electron microscope (FESEM) were used to investigate the influences of additions of 1.0%Nb, 1.0%Ti and 0.5%Cu on the damping capacity and corrosion resistance of Fe--13Cr--2.5Mo alloy. The results show that addition of 1.0%Nb causes abundant precipitations of (Nb, Mo)C, which
can obstruct the movement of domain walls, and significantly deteriorate the damping capacity at low strain amplitude. At strain amplitudes higher than 3.5×10-5, the amplitude--dependent dislocation damping Qdis-1 is generated due to dislocations interaction with (Nb, Mo)C, so the damping
capacity of Nb--containing alloy becomes higher than other alloys. Addition of Ti or Cu inhibits the precipitation of grain--boundary carbides,
while promotes the intragranular precipitations in the alloy distinctly. As a result, the damping capacity of the alloy with Ti or Cu is slightly lower than that of Fe--13Cr--2.5Mo alloy. Pitting corrosion test indicates that the  three alloying elements can all improve the corrosion resistance of Fe--13Cr--2.5Mo damping alloy. The 1.0%Ti--containing alloy possesses not only high damping capacity but also good corrosion resistance.

Key words:  Fe--Cr--Mo alloy      damping capacity      precipitation      Nb      Ti      pitting corrosion     
Received:  04 December 2008     
ZTFLH: 

TG142.71

 
Fund: 

Supported by National Natural Science Foundation of China (No.50871110)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/717

[1] Golovin I S. J Alloy Compd, 1994; 212: 147
[2] Golovin I S. Metall Mater Trans, 1994; 25A: 111
[3] Ritchie I G, Pan Z L. Metall Trans, 1991; 22A: 607
[4] Igata N, Nishiyama K, Ota K, Yin Y, Wuttig W, Golovin I S, Humbeeck J V, San Juan J. J Alloy Compd, 2003; 355: 230
[5] Azcoitia Ch, Karimi A. J Alloy Compd, 2000; 310: 160
[6] Pulino–Sagradi D, Sagradi M, Karimi A, Martin J L. Scr Mater, 1998; 39: 131
[7] Karimi A, Giauque P H, Martin J L. J Appl Phys, 1996; 79: 1670
[8] Chen S Y, Zhang T K, Kang X F, Yang C Q, Wang X. Stainless Steel. Beijing: Atomic Energy Press, 1995: 77
(陈世英, 张廷凯, 康喜范, 杨长强, 王 熙. 不锈钢. 北京: 原子能出版社, 1995: 77)
[9] Wang W G, Zhou B X. Mater Sci Eng, 2004; A366: 45
[10] Wang W G, Zhou B X, Zheng Z M. Acta Metall Sin, 1998; 34 : 1039
(王卫国, 周邦新, 郑忠民. 金属学报, 1998; 34: 1039)

[11] Lin R R, Cao M Z, Yang R. Mater Sci Forum, 2005; 475–479: 261
[12] Lin R R, Liu F, Cao M Z, Yang R. Acta Metall Sin, 2005; 41: 958
(林仁荣, 刘 芳, 曹名洲, 杨 锐. 金属学报, 2005; 41: 958)
[13] Aksoy M, Yilmaz O, Korkut M H. Wear, 2001; 249: 639
[14] Kuzucu V, Aksoy M, Korkut M H. J Mater Process Technol, 1998; 82: 165
[15] Cao J C, Yong Q L, Liu Q Y, Sun X J. Trans Mater Heat Treat, 2006; 27(5): 51
(曹建春, 雍岐龙, 刘清友, 孙新军. 材料热处理学报, 2006; 27(5): 51)
[16] Misra R D K, Weatherly G C, Hartmann J E, Boucek A J. Mater Sci Technol, 2001; 17: 1119
[17] Cao J C, Yong Q L, Liu Q Y, Sun X J. J Mater Sci, 2007; 42: 10080
[18] Hong I T, Koo C H. Mater Sci Eng, 2005; A393: 213
[19] Smith G W, Birchak J R. J Appl Phys, 1968; 39: 2311
[20] Smith G W, Birchak J R. J Appl Phys, 1969; 40: 5174
[21] Zhou Z C, Wei J N, Han F S. Phys Status Solidi, 2002; 191A: 89
[22] Coronel V F, Beshers D N. J Appl Phys, 1988; 64: 2006
[23] Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press, 1972: 411
[24] Feng D. Metal Physics (Vol.III)—Metallic Mechanical Properties. Beijing: Science Press, 1999: 157
(冯 端. 金属物理学(第3卷)------金属力学性质. 北京: 科学出版社, 1999: 157)

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[7] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[8] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[9] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[10] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[11] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[12] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[13] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[14] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[15] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
No Suggested Reading articles found!