Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (12): 1269-1273     DOI:
Research Articles Current Issue | Archive | Adv Search |
INFLUENCE OF THE MICROSTRUCTURE OF ELECTRODE MATERIALS ON THE MOTION BEHAVIORS OF VACUUM ARC CATHODE SPOT
WANG Yaping;ZHANG Hui; DING Bingjun;SUN Jun
Shenyang National Laboratory for Materials Science; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

WANG Yaping; ZHANG Hui; DING Bingjun; SUN Jun. INFLUENCE OF THE MICROSTRUCTURE OF ELECTRODE MATERIALS ON THE MOTION BEHAVIORS OF VACUUM ARC CATHODE SPOT. Acta Metall Sin, 2004, 40(12): 1269-1273 .

Download:  PDF(319KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Role of the microstructure of cathode materials in the geometrical parameter and migration process of cathode spot is studied on the basis of the observation of microscopic trace of vacuum arc without external magnetic field. Arc erosion pattern shows that spot craters locate on the phases with weak voltage withstanding, whose size, morphology and distribution determine the character of the arc spots. For the cathode alloys with ultra-fine microstructure the spot is dispersed and moves quickly on the cathode surface, indicating the spot motion is controlled by the microstructure of the electrode materials. The spot migration mode changes from the jumping motion to a continuous one when the microstructure scale is less than the spot size. It is concluded that the constituent phases and their sizes are the important factor dominating the microscopic migration mode of arc cathode spots.
Key words:  electrode material      microstructure      vacuum arc      
Received:  10 October 2003     
ZTFLH:  TM561.2  
  TG146.11  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I12/1269

[1] Juttner B. J Phys D: Appl Phys, 2001; 34: 3
[2] Boxman R L, Goldsmith S, Greenwood A. IEEE Trans Plasma Sci, 1997; 25: 1175
[3] Miller H C. IEEE Trans Electr Insul, 1990; 25: 765
[4] Latham R V. High Voltage Vacuum Insulation. London:Academic, 1995
[5] Lafferty J M. Vacuum Arcs, Theory and Application. NewYork: Willey, 1980
[6] Boxman R L, Martin P J, Sanders D M. Handbook ofVacuum Arc Science and Technology. Park Ridge, NewJersey: William Andrew Publishing, 1995
[7] Wang F Z, Zhang H, Ding B J, Zhu R H. Mater Sci Eng,2002; A366: 59
[8] Wang Y P, Ding B J. IEEE Trans Compon Packag Technol, 1999; 22: 467
[9] Zhang T, Inoue A. In: Johnson W L, Inoue A, Liu C T,eds., Symp Proc Bulk Metallic Glasses, Warrendale, PA:Materials Research Society, USA, 1998: 361
[10] Ding B J, Yang Z M, Wang X T. IEEE Trans ComponPackag Manuf Technol, 1996; 19: 76
[11] Wang Y P, Yang Z M, Ding B J, Zhou J E. IEEE TransDielectr Electr Insul, 1998; 5: 245K
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!