Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (8): 969-985    DOI: 10.11900/0412.1961.2023.00128
Overview Current Issue | Archive | Adv Search |
Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys
LIU Xingjun1,2,3(), WEI Zhenbang3,4, LU Yong3,4, HAN Jiajia3,4, SHI Rongpei1,2, WANG Cuiping3,4()
1Institute of Materials Genome and Big Data, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
2School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
3College of Materials and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, China
4Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen 361005, China
Cite this article: 

LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys. Acta Metall Sin, 2023, 59(8): 969-985.

Download:  HTML  PDF(3650KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Data on diffusion kinetics of superalloys is crucial for gaining a thorough understanding of the mechanisms underlying the phase transition and microstructural evolution of superalloys. Further, it is the basis for the design and development of novel Co and Nb-Si-based superalloys. Herein, the common elements used in preparing superalloys and their corresponding functions are systematically summarized. In addition, the contribution of our research group in the establishment and improvement of databases on multicomponent diffusion kinetics of novel Co and Nb-Si-based superalloys is presented in detail. Furthermore, the machine learning method for self-diffusion coefficient and impurity diffusion coefficient, the experimental method for mutual diffusion coefficients, and the molecular dynamics method for tracer diffusion coefficients in the alloy systems are briefly discussed. In addition to providing a brief introduction of the applications of the databases in the simulation of microstructural evolution and alloy design, an outlook on the development of the databases on diffusion kinetics and related applications is presented.

Key words:  Co-based superalloy      Nb-Si-based superalloy      kinetics database      microstructure     
Received:  27 March 2023     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51831007);Guangdong Basic and Applied Ba-sic Research Foundation(2021B1515120071);Shenzhen Science and Technology Program(SGDX20210823104002016)
Corresponding Authors:  LIU Xingjun, professor, Tel:(0592)2187888, E-mail: xjliu@hit.edu.cn;WANG Cuiping, professor, Tel:(0592)2180606, E-mail: wangcp@xmu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00128     OR     https://www.ams.org.cn/EN/Y2023/V59/I8/969

ElementMicrostructure and mechanical propertyOxidation resistance property
Al, CrStabilizing elements of γ-phase, reducing the alloy densityForming a dense oxide layer (Al2O3 or Cr2O3) to
prevent the oxidation of alloy
NiExtending γ/γ' two-phase region, increasing the volumeInhibiting the formation of the oxide layer Al2O3,
fraction of γ' phaseand reducing the oxidation resistance of the alloy

Ta, W

Stabilizing elements of the γ' phase, significantly increasing the alloy density and forming the new phases unfavorable to mechanical properties with high content

Enhancing the oxidation resistance of the alloy below 1000oC by reducing the diffusion rate of each element, and decreasing the oxidation resistance of the alloy above 1000oC by inhibiting the formation of continuous oxide layers

Ti

The stabilizing element of γ' phase, significantly reduces the density of the alloy and the mismatch between the two phases of γ/γ' which benefits mechanical properties. However, high content Ti leading to the formation of lamellar TCP phase is not conducive to the mechanical propertiesWith increasing temperature, the resistance to oxid-ations decreases because of the reduction in the density of oxide films caused by a phase trans-formation in TiO2

C, N, B

The alloy's strength increases, but its ductility and toughness decrease, due to the formation of interstitial phases with high

hardness, melting point, and brittleness

The addition of small amount of B is good for enhancing the adhesion of oxide film to the substrate, but too much of it will promote the diffusion of the element, which is not good for the high temperature oxidation resistance of the alloy
Table 1  Effects of alloying elements on Co-based superalloys[16-26]
ElementMicrostructure and mechanical propertyOxidation resistance property

Si

Alloy's strength increases, but its ductility and toughness decrease, due to the formation of Nb3Si and Nb5Si3

With increasing temperature over 1000oC, the resistance to oxidations decreases because of the reduction in the density of oxide films caused by a phase transformation in SiO2

Al

Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. Toughness decreases, due to the formation of Nb3Al with a content of Al more than 6% (atomic fraction)

Resistance to the oxidation increases with formation of a dense layer of Al2O3

Cr

Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. Formation of Nb9Si2Cr3 is be-neficial to creep resistance of the alloy, while the formation of NbCr2 phase has negative effectsEnhancing the oxidation resistance of the alloy above 1000oC by forming Nb9Si2Cr3, NbCr2 with high oxidation resistance and NbCrO4 which beneficial to improving adhesion of the oxide layer

Hf

Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. High temperature creep properties decrease, due to the formation of Hf5Si3 intermetallic compound with a high content of Hf in alloysResistance to oxidations decreases because of embrittlement and cracking of the HfO2 layer with a high content of Hf

Ti

Stabilizing the Nb3Si phase. Toughness increases due to the increase in the diffusion rates of the atom and the growth of the phase Nbss caused by the addition of Ti

Enhancing the oxidation resistance of the alloy at a temperature below 800oC by forming dense TiO2 layers, and decreasing at a temperature above 800oC due to a phase transformation in TiO2

V

Stabilizing the α-Nb5Si3 phase and inducing the microstr-ucture transformation from dispersion to eutectic-like structure. Alloy's fracture toughness decreases, but its high temperature strength decrease, due to the softening of solid solution caused by thermal activation diffusion process

Resistance to oxidations decreases because of cracking of oxidation layers caused by the formation of V2O5 with a high content of V in alloys

Table 2  Effects of alloying elements on Nb-Si-based superalloys[29-36]
MethodTotal number of systemTime consuming (single system)Property
Semi-empirical model> 15000< 1 minHigh efficiency, low accuracy
First principles> 15000> 5 hStrong, professionalism, high learning cost,
high accuracy, low efficiency
Experiment> 150003-5 dNot suitable for metastable systems
Table 3  Comparisons of three methods for calculating impurity diffusion coefficient and self-diffusion coefficient
Fig.1  Flow chart for obtaining diffusion coefficients based on experimental methods[37-39] (T0—diffusion temperature, x—distance, t—diffusion time, D*—tracer diffusion coefficient, c—element concentration, S—mass per unit area of the diffusing material)
Fig.2  Flow diagram of the implementation of machine-learning for predicting the diffusion coefficients in bcc, fcc, and hcp phases[67] (R—gas constant, T—temperature, D—diffusion coefficient)
Fig.3  Ranking of the importance of features in the impurity diffusion activation energy (QI) machine learning model (a)[67], and comparisons among the results calculated by the self-diffusion activation energy (Qs) (b)[84] and QI (c)[67] machine learning models and experimental measurements (The features were classified as follows, 1) Electron configuration: numbers of electrons in closed-shell and s-, p-, d-, and f-orbits (CEC, Ns, Np, Nd, Nf); 2) Atomic properties: atomic radius (AR), atomic mass (AM), and electronegativity (EN); 3) Lattice parameters (including a, c, and γ) and atomic coordinate number (Z); 4) Cij; 5) Tm. The superscripts of the features M, I, Δ, and R denote matrix, impurity, matrix-impurity, and matrix/impurity, respectively)
Mobility of CoPhaseParameterMobility of NbPhaseParameter
ϕCoCo [86]fcc-296542.9 - 74.48TϕNbNb [89]bcc-268253.0 - 108.60T
ϕCoNi [87]fcc-284.724.0 - 69.23TϕNbSi[85]bcc-268115.4 - 78.10T
ϕCoAl [88]fcc-172082.0 - 28.42TϕNbAl[85]bcc-267729.0 - 79.90T
ϕCoCr [85]fcc-265759.8 - 77.69TϕNbCr[85]bcc-212705.4 - 77.74T
ϕCoTa [85]fcc-283070.4 - 74.59TϕNbHf[85]bcc-252086.3 - 78.13T
ϕCoTi [85]fcc-229653.7 - 76.81TϕNbTi[90]bcc-268139.0 - 75.56T
ϕCoW [85]fcc-264096.5 - 75.94TϕNbV[91]bcc-258635.1 - 76.09T
Table 4  Partial optimization results of self-diffusion mobility parameter and impurity diffusion mobility parameter of the fcc phase in novel Co-based superalloys and the bcc phase in Nb-Si-based superalloys[85-91]
Fig.4  Comparisons between the experimental and DICTRA-simulated diffusion paths for various diffusion couples
(a) Ni-Co-Al alloy annealed at 1373 K for 259200 s[92]
(b) Co-Cr-Mo alloy annealed at 1473 K for 259200 s[93]
(c) Ni-Mo-Ta alloy annealed at 1473 K for 259200 s[94]
(d) Ni-Mo-Ta alloy annealed at 1573 K for 172800 s[94]
Fig.5  Time-dependent mean square displacement (MSD) of Co, Ti, and Ni in alloys with different compositions (a), comparisons of tracer diffusion coefficients calculated using kinetic database and molecular dynamic method (b), and tracer diffusion coefficient DNi* change with composition in the fcc phase of Co-Ti-Ni ternary system at various temperatures (c)[85]
Fig.6  Distributions of the crack susceptibility coefficient with compositions for Co-Ti-Al (a-c), Ni-Si-Hf (d-f) ternary alloys at cooling rates of 10 K/s (a, d), 100 K/s (b, e), and 1000 K/s (c, f)[85] (LN (CSC) indicates the logarithm of the thermal crack sensitivity coefficient, the higher the value, the stronger the tendency to produce thermal cracks)
Fig.7  Al (a-c) and W (d-f) concentration distributions in Co-9Al-9W alloy aged at 900oC for 10 h (a, d), 50 h (b, e), and 100 h (c, f) as simulated by phase-field method[107]
1 Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: Wiley, 1987: 1
2 Roskill Information Services. Superalloys: An Introduction [M]. Lasne, Belgium: Tantalum-Niobium International Study Center, 2016: 10
3 Shi C X, Zhong Z Z. Fifty Years of High Temperature Alloys in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
4 Huang W, Chang Y A. A thermodynamic analysis of the Ni-Al system [J]. Intermetallics, 1998, 6: 487
doi: 10.1016/S0966-9795(97)00099-X
5 Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 122
6 Bhadeshia H K D H. Nickel based superalloys [M]. Cambridge: University of Cambridge, 2003: 1
7 Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloys 2012 [C]. Hoboken: John Wiley & Sons, Inc., 2012: 189
8 Liu L, Zhang J, Ai C. Nickel-based superalloys [A]. Reference Module in Materials Science and Materials Engineering [M]. Amsterdam: Elsevier, 2020: 1
9 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
10 Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
doi: 10.1126/science.1179327 pmid: 19965415
11 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
12 Lass E A, Grist R D, Williams M E. Phase equilibria and microstructural evolution in ternary Co-Al-W between 750 and 1100oC [J]. J. Phase Equilib. Diffus., 2016, 37: 387
doi: 10.1007/s11669-016-0461-3
13 Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ′ high-temperature alloys [J]. JOM, 2010, 62(1): 58
14 Klein L, Bauer A, Neumeier S, et al. High temperature oxidation of γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2027
doi: 10.1016/j.corsci.2011.02.033
15 Liu X J, Chen Z F, Chen Y C, et al. Multicomponent Co-Ti-based superalloy with high solvus temperature and low lattice misfit [J]. Mater. Lett., 2021, 284: 128910
doi: 10.1016/j.matlet.2020.128910
16 Ishida K. Intermetallic compounds in Co-base alloys—Phase stability and application to superalloys [J]. MRS Online Proc. Libr., 2008, 1128: 606
17 Epishin A, Petrushin N, Nolze G, et al. Investigation of the γ′- strengthened quaternary Co-based alloys Co-Al-W-Ta [J]. Metall. Mater. Trans., 2018, 49A: 4042
18 Zhou P J, Zhai D R, Guo Y H, et al. The role of Ti on reducing the misfit of a Co-Al-W alloy [A]. TMS 2014: 143rd Annual Meeting & Exhibition [C]. Cham: Springer, 2016: 667
19 Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
20 Yoo B, Im H J, Seol J B, et al. On the microstructural evolution and partitioning behavior of L12-structured γ′-based Co-Ti-W alloys upon Cr and Al alloying [J]. Intermetallics, 2019, 104: 97
doi: 10.1016/j.intermet.2018.10.027
21 Weiser M, Virtanen S. Influence of W content on the oxidation behaviour of ternary γ'-strengthened Co-based model alloys between 800 and 900oC [J]. Oxid. Met., 2019, 92: 541
doi: 10.1007/s11085-019-09934-w
22 Xu Y T, Xia T D, Yan J Q, et al. Research on oxidation behavior of novel Co-Al-W alloy at high temperature [J]. Rare Met. Mater. Eng., 2011, 40: 1742
徐仰涛, 夏天东, 闫健强 等. 新型Co-Al-W合金高温氧化行为研究 [J]. 稀有金属材料与工程, 2011, 40: 1742
23 Ma C M, Yang S T, Zhang Y H, et al. Effects of temperature and Ti addition on high-temperature oxidation behaviors of Co-Al-W based superalloys [J]. Anti-Corros. Methods Mater., 2020, 67: 445
doi: 10.1108/ACMM-04-2020-2298
24 Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
25 Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
26 Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
doi: 10.1016/j.intermet.2019.04.009
27 Tsakiropoulos P. Refractory metal (Nb) intermetallic composites, high entropy alloys, complex concentrated alloys and the alloy design methodology NICE—Mise-en-scène patterns of thought and progress [J]. Materials, 2021, 14: 989
doi: 10.3390/ma14040989
28 Mo T T, Song N, Xie G, et al. The study of crystallization process of high-purity silica at high temperature [J]. Light Met., 2015, (4): 49
莫腾腾, 宋 宁, 谢 刚 等. 高温下高纯二氧化硅的结晶过程研究 [J]. 轻金属, 2015, (4): 49
29 Esparza N, Rangel V, Gutierrez A, et al. A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb-Cr-Si system [J]. Mater. High Temp., 2016, 33: 105
doi: 10.1179/1878641315Y.0000000012
30 Vazquez A, Varma S K. High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions [J]. J. Alloys Compd., 2011, 509: 7027
doi: 10.1016/j.jallcom.2011.02.174
31 Li Y, Zhu W F, Li Q, et al. Phase equilibria in the Nb-Ti side of the Nb-Si-Ti system at 1200oC and its oxidation behavior [J]. J. Alloys Compd., 2017, 704: 311
doi: 10.1016/j.jallcom.2017.02.007
32 Li N, Zhang B D, Hang H, et al. Discussion of effects of Hf on the high temperature oxidation of Nb-based alloy [J]. New Technol. New Process, 2015, (4): 103
李 宁, 张宝东, 黄 辉 等. 铪提高铌硅基合金高温抗氧化性能的机理探讨 [J]. 新技术新工艺, 2015, (4): 103
33 Han G M, Li F, Sun B D. Research progress in ultrahigh temperature Nb-Si based alloys [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 1071
韩国明, 李 飞, 孙宝德. Nb-Si基超高温合金研究进展 [J]. 特种铸造及有色合金, 2018, 38: 1071
doi: 10.15980/j.tzzz.2018.10.008
34 Kim W Y, Yeo I D, Ra T Y, et al. Effect of V addition on microstructure and mechanical property in the Nb-Si alloy system [J]. J. Alloys Compd., 2004, 364: 186
doi: 10.1016/S0925-8388(03)00495-X
35 Kim W Y, Kim H S, Kim S K, et al. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy [J]. Mater. Sci. Forum, 2005, 486-487: 342
doi: 10.4028/www.scientific.net/MSF.486-487
36 Bewlay B P, Whiting P W, Davis A W, et al. Creep mechanisms in niobium-silicide based in-situ composites [J]. MRS Online Proc. Libr., 1998, 552: 6111
37 Neumann G, Tuijn C. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data [M]. London: Pergamon, 2011: 1
38 Chen J, Liu Y J, Sheng G, et al. Atomic mobilities, interdiffusivities and their related diffusional behaviors in fcc Co-Cr-Ni alloys [J]. J. Alloys Compd., 2015, 621: 428
doi: 10.1016/j.jallcom.2014.09.139
39 Liu B S, Ren Y P, Li H X, et al. Interdiffusion and impurity diffusion behavior in polycrystalline Mg-Y binary system [J]. J. Alloys Compd., 2021, 867: 159070
doi: 10.1016/j.jallcom.2021.159070
40 Hirano K, Fujikawa S. Impurity diffusion in aluminum [J]. J. Nucl. Mater., 1978, 69-70: 564
doi: 10.1016/0022-3115(78)90275-1
41 Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1
42 Zhang Q F, Chen Z Q, Zhong W, et al. Accurate and efficient measurement of impurity (dilute) diffusion coefficients without isotope tracer experiments [J]. Scr. Mater., 2017, 128: 32
doi: 10.1016/j.scriptamat.2016.09.040
43 Askill J. Tracer Diffusion Data for Metals, Alloys, and Simple Oxides [M]. Boston: Springer, 1970: 1
44 Askill J. Correlation of self diffusion data in metals as a function of thermal expansion coefficient [J]. Phys. Stat. Solidi, 1965, 11B: K49
45 Dushman S, Langmuir I. The diffusion coefficient in solids and its temperature coefficient [J]. Phys. Rev., 1922, 20: 113
doi: 10.1103/PhysRevA.20.113
46 Leclaire A D. Diffusion in Body-Centered Cubic Metals [M]. Metals Park, Ohio: American Society for Metals, 1965: 1
47 Neumann G, Tuijn C. Application of the thermodynamic model to the diffusion of substitutionally dissolved impurities in lead [J]. Physica, 2002, 319B: 343
48 Koerner R M, Lord Jr A E, Hsuan Y H. Arrhenius modeling to predict geosynthetic degradation [J]. Geotext. Geomembr., 1992, 11: 151
doi: 10.1016/0266-1144(92)90042-9
49 Han J J, Wang C P, Liu X J. A modified model to predict self-diffusion coefficients in metastable FCC, BCC and HCP structures [J]. J. Phase Equilib. Diffus., 2013, 34: 17
doi: 10.1007/s11669-012-0185-y
50 Leclaire A D, Lidiard A B. LIII. Correlation effects in diffusion in crystals [J]. Philos. Mag., 1956, 1A: 518
51 Neumann G, Hirschwald W. Impurity diffusion in F.C.C. metals [J]. Phys. Stat. Solidi, 1973, 55B: 99
52 Le Claire A D. On the theory of impurity diffusion in metals [J]. Philos. Mag., 1962, 7A: 141
53 Neumann G. A model for the calculation of monovacancy and divacancy contributions to the impurity diffusion in noble metals [J]. Phys. Stat. Solidi, 1987, 144B: 329
54 Neumann G, Tölle V, Tuijn C, et al. A modified thermodynamic model for the impurity diffusion via nearest- and next-nearest neighbour jumps in body-centred cubic metals of the groups V and VI [J]. Physica, 1997, 233B: 161
55 Lazarus D. Effect of screening on solute diffusion in metals [J]. Phys. Rev., 1954, 93: 973
doi: 10.1103/PhysRev.93.973
56 Rabinovitch A, Pelleg J. A simple model for impurity diffusion [J]. J. Phys., 1977, 7F: 1853
57 Shang S L, Zhou B C, Wang W Y, et al. A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients [J]. Acta Mater., 2016, 109: 128
doi: 10.1016/j.actamat.2016.02.031
58 Mantina M, Wang Y, Chen L Q, et al. First principles impurity diffusion coefficients [J]. Acta Mater., 2009, 57: 4102
doi: 10.1016/j.actamat.2009.05.006
59 Andersson D A, Simak S I. Monovacancy and divacancy formation and migration in copper: A first-principles theory [J]. Phys. Rev., 2004, 70B: 115108
60 Hargather C Z, Shang S L, Liu Z K. A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate [J]. Acta Mater., 2018, 157: 126
doi: 10.1016/j.actamat.2018.07.020
61 Ganeshan S, Hector L G, Liu Z K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model [J]. Acta Mater., 2011, 59: 3214
doi: 10.1016/j.actamat.2011.01.062
62 Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys [J]. Acta Mater., 2018, 154: 161
doi: 10.1016/j.actamat.2018.05.015
63 Zou N, Lu H J, Lu X G. Impurity diffusion coefficients in BCC Nb from first-principles calculations [J]. J. Alloys Compd., 2019, 803: 684
doi: 10.1016/j.jallcom.2019.06.293
64 Zeng Y Z, Bai K W. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII [J]. J. Alloys Compd., 2015, 624: 201
doi: 10.1016/j.jallcom.2014.11.091
65 Wu H, Lorenson A, Anderson B, et al. Robust FCC solute diffusion predictions from ab-initio machine learning methods [J]. Comput. Mater. Sci., 2017, 134: 160
doi: 10.1016/j.commatsci.2017.03.052
66 Lu H J, Zou N, Jacobs R, et al. Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion [J]. Comput. Mater. Sci., 2019, 169: 109075
doi: 10.1016/j.commatsci.2019.06.010
67 Wei Z B, Yu J X, Lu Y, et al. Prediction of diffusion coefficients in fcc, bcc and hcp phases remained stable or metastable by the machine-learning methods [J]. Mater. Des., 2021, 198: 109287
doi: 10.1016/j.matdes.2020.109287
68 Smith W F, Hashemi J. Foundations of Materials Science and Engineering [M]. 4th Ed., New York: McGraw-Hill Publishing, 2006: 1
69 Matano C. On the relation between diffusion-coefficients and concentrations of solid metals [J]. Jpn. J. Appl. Phys., 1933, 8: 109
70 den Broeder F J A. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems [J]. Scr. Metall., 1969, 3: 321
doi: 10.1016/0036-9748(69)90296-8
71 Kirkaldy J S. Diffusion in multicomponent metallic systems [J]. Can. J. Phys., 1957, 35: 435
doi: 10.1139/p57-047
72 Whittle D P, Green A. The measurement of diffusion coefficients in ternary systems [J]. Scr. Metall., 1974, 8: 883
doi: 10.1016/0036-9748(74)90311-1
73 Chen W M, Zhang L J, Du Y, et al. A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple [J]. Scr. Mater., 2014, 90-91: 53
doi: 10.1016/j.scriptamat.2014.07.016
74 Zhong J, Chen W M, Zhang L J. HitDIC: A free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase [J]. Calphad, 2018, 60: 177
doi: 10.1016/j.calphad.2017.12.004
75 Zhong J, Li Q, Deng C M, et al. Automated development of an accurate diffusion database in FCC AlCoCrFeNi high-entropy alloys from a big dataset of composition profiles [J]. Materials, 2022, 15: 3240
doi: 10.3390/ma15093240
76 Liu F, Wang Z X, Wang Z, et al. High‐throughput method—Accelerated design of Ni-based superalloys [J]. Adv. Funct. Mater., 2022, 32: 2109367
doi: 10.1002/adfm.v32.28
77 Heumann T. Zur berechnung von diffusionskoeffizienten bei ein- und mehrphasiger diffusion in festen legierungen [J]. Z. Phys. Chem., 1952, 201: 168
doi: 10.1515/zpch-1952-20114
78 Fitzer E, Schmidt F K. Die diffusion von silizium in Nb5Si3: The diffusion of silicon in Nb5Si3 [J]. Monatsh. Chem./Chem. Mon., 1971, 102: 1608
79 Darken L S. Diffusion, mobility and their interrelation through free energy in binary metallic system [J]. Trans. AIME, 1948, 175: 184
80 Marian J, Wirth B D, Odette G R, et al. Cu diffusion in α-Fe: Determination of solute diffusivities using atomic-scale simulations [J]. Comput. Mater. Sci., 2004, 31: 347
doi: 10.1016/j.commatsci.2004.03.023
81 Pan L. Atomic simulations of the diffusion process of Cr in Fe-Cr alloy [D]. Nanjing: Nanjing University of Science and Technology, 2015
潘 龙. Cr在FeCr合金中扩散过程的原子尺度模拟研究 [D]. 南京: 南京理工大学, 2015
82 Maksimenko V N, Lipnitskii A G, Saveliev V N, et al. Prediction of the diffusion characteristics of the V-Cr system by molecular dynamics based on N-body interatomic potentials [J]. Comput. Mater. Sci., 2021, 198: 110648
doi: 10.1016/j.commatsci.2021.110648
83 Huang X S, Liu L H, Duan X B, et al. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential [J]. Mater. Des., 2021, 202: 109560
doi: 10.1016/j.matdes.2021.109560
84 Wei Z B, Wang C P, Xu W W, et al. A predictive model of impurity diffusion coefficients in face-centered-cubic metallic systems based on machine-learning [J]. Calphad, 2021, 72: 102251
doi: 10.1016/j.calphad.2021.102251
85 Wei Z B. Establishment and application of kinetic databases for the novel Co-based and Nb-Si-based high-temperature alloys [D]. Xiamen: Xiamen University, 2022
魏振帮. 新型Co基和Nb-Si基高温合金扩散动力学数据库的建立及应用 [D]. 厦门. 厦门大学, 2022
86 Zhang L, Du Y, Ouyang Y, et al. Atomic mobilities, diffusivities and simulation of diffusion growth in the Co-Si system [J]. Acta Mater., 2008, 56: 3940
doi: 10.1016/j.actamat.2008.04.017
87 Cui Y W, Jiang M, Ohnuma I, et al. Computational study of atomic mobility for fcc phase of Co-Fe and Co-Ni binaries [J]. J. Phase Equilib. Diffus., 2008, 29: 2
doi: 10.1007/s11669-007-9238-z
88 Cui Y W, Tang B, Kato R, et al. Interdiffusion and atomic mobility for face-centered-cubic Co-Al alloys [J]. Metall. Mater. Trans., 2011, 42A: 2542
89 Liu Y J, Zhang L J, Pan T Y, et al. Study of diffusion mobilities of Nb and Zr in bcc Nb-Zr alloys [J]. Calphad, 2008, 32: 455
doi: 10.1016/j.calphad.2008.06.008
90 Liu Y J, Pan T Y, Zhang L J, et al. Kinetic modeling of diffusion mobilities in bcc Ti-Nb alloys [J]. J. Alloys Compd., 2009, 476: 429
doi: 10.1016/j.jallcom.2008.09.019
91 Liu Y J, Yu D, Zhang L J, et al. Atomic mobilities and diffusional growth in solid phases of the V-Nb and V-Zr systems [J]. Calphad, 2009, 33: 425
doi: 10.1016/j.calphad.2008.12.008
92 Yang Y L, Shi Z, Luo Y S, et al. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni-Co-Al alloys [J]. J. Phase Equilib. Diffus., 2016, 37: 269
doi: 10.1007/s11669-016-0453-3
93 Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in fcc Co-Cr-Mo Alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 437
doi: 10.1007/s11669-018-0657-9
94 Wang C P, Yu X, Qin S Y, et al. Interdiffusion and atomic mobilities in fcc Ni-Mo-Ta alloys [J]. J. Phase Equilib. Diffus., 2019, 40: 432
doi: 10.1007/s11669-019-00739-7
95 Liu X J, Yu Y, Lu Y, et al. Interdiffusion and atomic mobilities in Co-rich fcc Co-Cr-V alloys [J]. Rare Met. Mater. Eng., 2018, 47: 3251
doi: 10.1016/S1875-5372(18)30228-5
96 Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in Ni-rich fcc Ni-Cr-W Alloys [J]. Rare Met. Mater. Eng., 2020, 49: 441
97 Wei Z B, Wang C P, Qin S Y, et al. Assessment of atomic mobilities for bcc phase in the Ti-Nb-V system [J]. J. Phase Equilib. Diffus., 2020, 41: 191
doi: 10.1007/s11669-020-00801-9
98 Chen Q, Jou H J, Sterner G. TC-PRISMA User's Guide and Examples [M]. Stockholm: Thermo-Calc Software AB, 2011: 1
99 Wang Y. Study on the thermodynamics of the Ni-Co-Al-Mo-W system and the diffusion kinetics of its fcc phase [D]. Shanghai: Shanghai University, 2018
王 杨. Ni-Co-Al-Mo-W体系热力学及其fcc相扩散动力学研究 [D]. 上海: 上海大学, 2018
100 Azzam A, Philippe T, Hauet A, et al. Kinetics pathway of precipitation in model Co-Al-W superalloy [J]. Acta Mater., 2018, 145: 377
doi: 10.1016/j.actamat.2017.12.032
101 Wang W, Hou Z Y, Lizárraga R, et al. An experimental and theoretical study of duplex fcc + hcp cobalt based entropic alloys [J]. Acta Mater., 2019, 176: 11
doi: 10.1016/j.actamat.2019.06.041
102 Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
103 Rabbe D, translated by Xiang J Z, Wu X H. Computational Materials Science [M]. Beijing: Chemical Industry Press, 2002: 1
Rabbe D著, 项金钟, 吴兴惠 译. 计算材料学 [M]. 北京: 化学工业出版社, 2002: 1
104 Yang Y F, Xie M, Cheng Y, et al. Research status of numerical simulation of solidification microstructure [J]. Mater. Rep., 2014, 28(21): 24
杨云峰, 谢 明, 程 勇 等. 金属凝固微观组织数值模拟研究现状 [J]. 材料导报, 2014, 28(21): 24
105 Shi S J, Yan Z W, Li Y S, et al. Phase-field simulation of early-stage kinetics evolution of γ' phase in medium supersaturation Co-Al-W alloy [J]. J. Mater. Sci. Technol., 2020, 53: 1
doi: 10.1016/j.jmst.2020.02.038
106 Chen J, Guo M, Yang M, et al. Phase-field simulation of γ' coarsening behavior in cobalt-based superalloy [J]. Comput. Mater. Sci., 2021, 191: 110358
doi: 10.1016/j.commatsci.2021.110358
107 Liu X J, Kong H F, Lu Y, et al. Phase-field simulation on microstructure evolution of D019 phase in γ/γ′ structure of Co-Al-W superalloys [J]. Prog. Nat. Sci.: Mater. Int., 2020, 30: 382
doi: 10.1016/j.pnsc.2020.05.004
108 Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!