Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys
LIU Xingjun1,2,3(), WEI Zhenbang3,4, LU Yong3,4, HAN Jiajia3,4, SHI Rongpei1,2, WANG Cuiping3,4()
1Institute of Materials Genome and Big Data, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China 2School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China 3College of Materials and Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, China 4Xiamen Key Laboratory of High Performance Metals and Materials, Xiamen University, Xiamen 361005, China
Cite this article:
LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys. Acta Metall Sin, 2023, 59(8): 969-985.
Data on diffusion kinetics of superalloys is crucial for gaining a thorough understanding of the mechanisms underlying the phase transition and microstructural evolution of superalloys. Further, it is the basis for the design and development of novel Co and Nb-Si-based superalloys. Herein, the common elements used in preparing superalloys and their corresponding functions are systematically summarized. In addition, the contribution of our research group in the establishment and improvement of databases on multicomponent diffusion kinetics of novel Co and Nb-Si-based superalloys is presented in detail. Furthermore, the machine learning method for self-diffusion coefficient and impurity diffusion coefficient, the experimental method for mutual diffusion coefficients, and the molecular dynamics method for tracer diffusion coefficients in the alloy systems are briefly discussed. In addition to providing a brief introduction of the applications of the databases in the simulation of microstructural evolution and alloy design, an outlook on the development of the databases on diffusion kinetics and related applications is presented.
Fund: National Natural Science Foundation of China(51831007);Guangdong Basic and Applied Ba-sic Research Foundation(2021B1515120071);Shenzhen Science and Technology Program(SGDX20210823104002016)
Corresponding Authors:
LIU Xingjun, professor, Tel:(0592)2187888, E-mail: xjliu@hit.edu.cn;WANG Cuiping, professor, Tel:(0592)2180606, E-mail: wangcp@xmu.edu.cn
Stabilizing elements of γ-phase, reducing the alloy density
Forming a dense oxide layer (Al2O3 or Cr2O3) to
prevent the oxidation of alloy
Ni
Extending γ/γ' two-phase region, increasing the volume
Inhibiting the formation of the oxide layer Al2O3,
fraction of γ' phase
and reducing the oxidation resistance of the alloy
Ta, W
Stabilizing elements of the γ' phase, significantly increasing the alloy density and forming the new phases unfavorable to mechanical properties with high content
Enhancing the oxidation resistance of the alloy below 1000oC by reducing the diffusion rate of each element, and decreasing the oxidation resistance of the alloy above 1000oC by inhibiting the formation of continuous oxide layers
Ti
The stabilizing element of γ' phase, significantly reduces the density of the alloy and the mismatch between the two phases of γ/γ' which benefits mechanical properties. However, high content Ti leading to the formation of lamellar TCP phase is not conducive to the mechanical properties
With increasing temperature, the resistance to oxid-ations decreases because of the reduction in the density of oxide films caused by a phase trans-formation in TiO2
C, N, B
The alloy's strength increases, but its ductility and toughness decrease, due to the formation of interstitial phases with high
hardness, melting point, and brittleness
The addition of small amount of B is good for enhancing the adhesion of oxide film to the substrate, but too much of it will promote the diffusion of the element, which is not good for the high temperature oxidation resistance of the alloy
Table 1 Effects of alloying elements on Co-based superalloys[16-26]
Element
Microstructure and mechanical property
Oxidation resistance property
Si
Alloy's strength increases, but its ductility and toughness decrease, due to the formation of Nb3Si and Nb5Si3
With increasing temperature over 1000oC, the resistance to oxidations decreases because of the reduction in the density of oxide films caused by a phase transformation in SiO2
Al
Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. Toughness decreases, due to the formation of Nb3Al with a content of Al more than 6% (atomic fraction)
Resistance to the oxidation increases with formation of a dense layer of Al2O3
Cr
Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. Formation of Nb9Si2Cr3 is be-neficial to creep resistance of the alloy, while the formation of NbCr2 phase has negative effects
Enhancing the oxidation resistance of the alloy above 1000oC by forming Nb9Si2Cr3, NbCr2 with high oxidation resistance and NbCrO4 which beneficial to improving adhesion of the oxide layer
Hf
Inhibiting the formation of Nb3Si phase and promoting the formation of β-Nb5Si3. High temperature creep properties decrease, due to the formation of Hf5Si3 intermetallic compound with a high content of Hf in alloys
Resistance to oxidations decreases because of embrittlement and cracking of the HfO2 layer with a high content of Hf
Ti
Stabilizing the Nb3Si phase. Toughness increases due to the increase in the diffusion rates of the atom and the growth of the phase Nbss caused by the addition of Ti
Enhancing the oxidation resistance of the alloy at a temperature below 800oC by forming dense TiO2 layers, and decreasing at a temperature above 800oC due to a phase transformation in TiO2
V
Stabilizing the α-Nb5Si3 phase and inducing the microstr-ucture transformation from dispersion to eutectic-like structure. Alloy's fracture toughness decreases, but its high temperature strength decrease, due to the softening of solid solution caused by thermal activation diffusion process
Resistance to oxidations decreases because of cracking of oxidation layers caused by the formation of V2O5 with a high content of V in alloys
Table 2 Effects of alloying elements on Nb-Si-based superalloys[29-36]
Method
Total number of system
Time consuming (single system)
Property
Semi-empirical model
> 15000
< 1 min
High efficiency, low accuracy
First principles
> 15000
> 5 h
Strong, professionalism, high learning cost,
high accuracy, low efficiency
Experiment
> 15000
3-5 d
Not suitable for metastable systems
Table 3 Comparisons of three methods for calculating impurity diffusion coefficient and self-diffusion coefficient
Fig.1 Flow chart for obtaining diffusion coefficients based on experimental methods[37-39] (T0—diffusion temperature, x—distance, t—diffusion time, D*—tracer diffusion coefficient, c—element concentration, S—mass per unit area of the diffusing material)
Fig.2 Flow diagram of the implementation of machine-learning for predicting the diffusion coefficients in bcc, fcc, and hcp phases[67] (R—gas constant, T—temperature, D—diffusion coefficient)
Fig.3 Ranking of the importance of features in the impurity diffusion activation energy (QI) machine learning model (a)[67], and comparisons among the results calculated by the self-diffusion activation energy (Qs) (b)[84] and QI (c)[67] machine learning models and experimental measurements (The features were classified as follows, 1) Electron configuration: numbers of electrons in closed-shell and s-, p-, d-, and f-orbits (CEC, Ns, Np, Nd, Nf); 2) Atomic properties: atomic radius (AR), atomic mass (AM), and electronegativity (EN); 3) Lattice parameters (including a, c, and γ) and atomic coordinate number (Z); 4) Cij; 5) Tm. The superscripts of the features M, I, Δ, and R denote matrix, impurity, matrix-impurity, and matrix/impurity, respectively)
Mobility of Co
Phase
Parameter
Mobility of Nb
Phase
Parameter
[86]
fcc
-296542.9 - 74.48T
[89]
bcc
-268253.0 - 108.60T
[87]
fcc
-284.724.0 - 69.23T
[85]
bcc
-268115.4 - 78.10T
[88]
fcc
-172082.0 - 28.42T
[85]
bcc
-267729.0 - 79.90T
[85]
fcc
-265759.8 - 77.69T
[85]
bcc
-212705.4 - 77.74T
[85]
fcc
-283070.4 - 74.59T
[85]
bcc
-252086.3 - 78.13T
[85]
fcc
-229653.7 - 76.81T
[90]
bcc
-268139.0 - 75.56T
[85]
fcc
-264096.5 - 75.94T
[91]
bcc
-258635.1 - 76.09T
Table 4 Partial optimization results of self-diffusion mobility parameter and impurity diffusion mobility parameter of the fcc phase in novel Co-based superalloys and the bcc phase in Nb-Si-based superalloys[85-91]
Fig.4 Comparisons between the experimental and DICTRA-simulated diffusion paths for various diffusion couples (a) Ni-Co-Al alloy annealed at 1373 K for 259200 s[92] (b) Co-Cr-Mo alloy annealed at 1473 K for 259200 s[93] (c) Ni-Mo-Ta alloy annealed at 1473 K for 259200 s[94] (d) Ni-Mo-Ta alloy annealed at 1573 K for 172800 s[94]
Fig.5 Time-dependent mean square displacement (MSD) of Co, Ti, and Ni in alloys with different compositions (a), comparisons of tracer diffusion coefficients calculated using kinetic database and molecular dynamic method (b), and tracer diffusion coefficient change with composition in the fcc phase of Co-Ti-Ni ternary system at various temperatures (c)[85]
Fig.6 Distributions of the crack susceptibility coefficient with compositions for Co-Ti-Al (a-c), Ni-Si-Hf (d-f) ternary alloys at cooling rates of 10 K/s (a, d), 100 K/s (b, e), and 1000 K/s (c, f)[85] (LN (CSC) indicates the logarithm of the thermal crack sensitivity coefficient, the higher the value, the stronger the tendency to produce thermal cracks)
Fig.7 Al (a-c) and W (d-f) concentration distributions in Co-9Al-9W alloy aged at 900oC for 10 h (a, d), 50 h (b, e), and 100 h (c, f) as simulated by phase-field method[107]
1
Sims C T, Stoloff N S, Hagel W C. Superalloys II [M]. New York: Wiley, 1987: 1
2
Roskill Information Services. Superalloys: An Introduction [M]. Lasne, Belgium: Tantalum-Niobium International Study Center, 2016: 10
3
Shi C X, Zhong Z Z. Fifty Years of High Temperature Alloys in China [M]. Beijing: Metallurgical Industry Press, 2006: 1
师昌绪, 仲增墉. 中国高温合金五十年 [M]. 北京: 冶金工业出版社, 2006: 1
4
Huang W, Chang Y A. A thermodynamic analysis of the Ni-Al system [J]. Intermetallics, 1998, 6: 487
doi: 10.1016/S0966-9795(97)00099-X
5
Yokokawa T, Harada H, Kawagishi K, et al. Advanced alloy design program and improvement of sixth-generation Ni-base single crystal superalloy TMS-238 [A]. Superalloys 2020 [C]. Cham: Springer, 2020: 122
6
Bhadeshia H K D H. Nickel based superalloys [M]. Cambridge: University of Cambridge, 2003: 1
7
Kawagishi K, Yeh A C, Yokokawa T, et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238 [A]. Superalloys 2012 [C]. Hoboken: John Wiley & Sons, Inc., 2012: 189
8
Liu L, Zhang J, Ai C. Nickel-based superalloys [A]. Reference Module in Materials Science and Materials Engineering [M]. Amsterdam: Elsevier, 2020: 1
9
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
doi: 10.1557/jmr.2018.153
Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
12
Lass E A, Grist R D, Williams M E. Phase equilibria and microstructural evolution in ternary Co-Al-W between 750 and 1100oC [J]. J. Phase Equilib. Diffus., 2016, 37: 387
doi: 10.1007/s11669-016-0461-3
13
Pollock T M, Dibbern J, Tsunekane M, et al. New Co-based γ-γ′ high-temperature alloys [J]. JOM, 2010, 62(1): 58
14
Klein L, Bauer A, Neumeier S, et al. High temperature oxidation of γ/γ′-strengthened Co-base superalloys [J]. Corros. Sci., 2011, 53: 2027
doi: 10.1016/j.corsci.2011.02.033
15
Liu X J, Chen Z F, Chen Y C, et al. Multicomponent Co-Ti-based superalloy with high solvus temperature and low lattice misfit [J]. Mater. Lett., 2021, 284: 128910
doi: 10.1016/j.matlet.2020.128910
16
Ishida K. Intermetallic compounds in Co-base alloys—Phase stability and application to superalloys [J]. MRS Online Proc. Libr., 2008, 1128: 606
17
Epishin A, Petrushin N, Nolze G, et al. Investigation of the γ′- strengthened quaternary Co-based alloys Co-Al-W-Ta [J]. Metall. Mater. Trans., 2018, 49A: 4042
18
Zhou P J, Zhai D R, Guo Y H, et al. The role of Ti on reducing the misfit of a Co-Al-W alloy [A]. TMS 2014: 143rd Annual Meeting & Exhibition [C]. Cham: Springer, 2016: 667
19
Povstugar I, Zenk C H, Li R, et al. Elemental partitioning, lattice misfit and creep behaviour of Cr containing γ′ strengthened Co base superalloys [J]. Mater. Sci. Technol., 2016, 32: 220
doi: 10.1179/1743284715Y.0000000112
20
Yoo B, Im H J, Seol J B, et al. On the microstructural evolution and partitioning behavior of L12-structured γ′-based Co-Ti-W alloys upon Cr and Al alloying [J]. Intermetallics, 2019, 104: 97
doi: 10.1016/j.intermet.2018.10.027
21
Weiser M, Virtanen S. Influence of W content on the oxidation behaviour of ternary γ'-strengthened Co-based model alloys between 800 and 900oC [J]. Oxid. Met., 2019, 92: 541
doi: 10.1007/s11085-019-09934-w
22
Xu Y T, Xia T D, Yan J Q, et al. Research on oxidation behavior of novel Co-Al-W alloy at high temperature [J]. Rare Met. Mater. Eng., 2011, 40: 1742
Ma C M, Yang S T, Zhang Y H, et al. Effects of temperature and Ti addition on high-temperature oxidation behaviors of Co-Al-W based superalloys [J]. Anti-Corros. Methods Mater., 2020, 67: 445
doi: 10.1108/ACMM-04-2020-2298
24
Yu J X, Wang C L, Chen Y C, et al. Accelerated design of L12-strengthened Co-base superalloys based on machine learning of experimental data [J]. Mater. Des., 2020, 195: 108996
doi: 10.1016/j.matdes.2020.108996
25
Ruan J J, Xu W W, Yang T, et al. Accelerated design of novel W-free high-strength Co-base superalloys with extremely wide γ/γʹ region by machine learning and CALPHAD methods [J]. Acta Mater., 2020, 186: 425
doi: 10.1016/j.actamat.2020.01.004
26
Yu J X, Guo S, Chen Y C, et al. A two-stage predicting model for γ′ solvus temperature of L12-strengthened Co-base superalloys based on machine learning [J]. Intermetallics, 2019, 110: 106466
doi: 10.1016/j.intermet.2019.04.009
27
Tsakiropoulos P. Refractory metal (Nb) intermetallic composites, high entropy alloys, complex concentrated alloys and the alloy design methodology NICE—Mise-en-scène patterns of thought and progress [J]. Materials, 2021, 14: 989
doi: 10.3390/ma14040989
28
Mo T T, Song N, Xie G, et al. The study of crystallization process of high-purity silica at high temperature [J]. Light Met., 2015, (4): 49
Esparza N, Rangel V, Gutierrez A, et al. A comparison of the effect of Cr and Al additions on the oxidation behaviour of alloys from the Nb-Cr-Si system [J]. Mater. High Temp., 2016, 33: 105
doi: 10.1179/1878641315Y.0000000012
30
Vazquez A, Varma S K. High-temperature oxidation behavior of Nb-Si-Cr alloys with Hf additions [J]. J. Alloys Compd., 2011, 509: 7027
doi: 10.1016/j.jallcom.2011.02.174
31
Li Y, Zhu W F, Li Q, et al. Phase equilibria in the Nb-Ti side of the Nb-Si-Ti system at 1200oC and its oxidation behavior [J]. J. Alloys Compd., 2017, 704: 311
doi: 10.1016/j.jallcom.2017.02.007
32
Li N, Zhang B D, Hang H, et al. Discussion of effects of Hf on the high temperature oxidation of Nb-based alloy [J]. New Technol. New Process, 2015, (4): 103
Kim W Y, Yeo I D, Ra T Y, et al. Effect of V addition on microstructure and mechanical property in the Nb-Si alloy system [J]. J. Alloys Compd., 2004, 364: 186
doi: 10.1016/S0925-8388(03)00495-X
35
Kim W Y, Kim H S, Kim S K, et al. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy [J]. Mater. Sci. Forum, 2005, 486-487: 342
doi: 10.4028/www.scientific.net/MSF.486-487
36
Bewlay B P, Whiting P W, Davis A W, et al. Creep mechanisms in niobium-silicide based in-situ composites [J]. MRS Online Proc. Libr., 1998, 552: 6111
37
Neumann G, Tuijn C. Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data [M]. London: Pergamon, 2011: 1
38
Chen J, Liu Y J, Sheng G, et al. Atomic mobilities, interdiffusivities and their related diffusional behaviors in fcc Co-Cr-Ni alloys [J]. J. Alloys Compd., 2015, 621: 428
doi: 10.1016/j.jallcom.2014.09.139
39
Liu B S, Ren Y P, Li H X, et al. Interdiffusion and impurity diffusion behavior in polycrystalline Mg-Y binary system [J]. J. Alloys Compd., 2021, 867: 159070
doi: 10.1016/j.jallcom.2021.159070
40
Hirano K, Fujikawa S. Impurity diffusion in aluminum [J]. J. Nucl. Mater., 1978, 69-70: 564
doi: 10.1016/0022-3115(78)90275-1
41
Mehrer H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes [M]. Berlin, Heidelberg: Springer, 2007: 1
42
Zhang Q F, Chen Z Q, Zhong W, et al. Accurate and efficient measurement of impurity (dilute) diffusion coefficients without isotope tracer experiments [J]. Scr. Mater., 2017, 128: 32
doi: 10.1016/j.scriptamat.2016.09.040
43
Askill J. Tracer Diffusion Data for Metals, Alloys, and Simple Oxides [M]. Boston: Springer, 1970: 1
44
Askill J. Correlation of self diffusion data in metals as a function of thermal expansion coefficient [J]. Phys. Stat. Solidi, 1965, 11B: K49
45
Dushman S, Langmuir I. The diffusion coefficient in solids and its temperature coefficient [J]. Phys. Rev., 1922, 20: 113
doi: 10.1103/PhysRevA.20.113
46
Leclaire A D. Diffusion in Body-Centered Cubic Metals [M]. Metals Park, Ohio: American Society for Metals, 1965: 1
47
Neumann G, Tuijn C. Application of the thermodynamic model to the diffusion of substitutionally dissolved impurities in lead [J]. Physica, 2002, 319B: 343
48
Koerner R M, Lord Jr A E, Hsuan Y H. Arrhenius modeling to predict geosynthetic degradation [J]. Geotext. Geomembr., 1992, 11: 151
doi: 10.1016/0266-1144(92)90042-9
49
Han J J, Wang C P, Liu X J. A modified model to predict self-diffusion coefficients in metastable FCC, BCC and HCP structures [J]. J. Phase Equilib. Diffus., 2013, 34: 17
doi: 10.1007/s11669-012-0185-y
50
Leclaire A D, Lidiard A B. LIII. Correlation effects in diffusion in crystals [J]. Philos. Mag., 1956, 1A: 518
51
Neumann G, Hirschwald W. Impurity diffusion in F.C.C. metals [J]. Phys. Stat. Solidi, 1973, 55B: 99
52
Le Claire A D. On the theory of impurity diffusion in metals [J]. Philos. Mag., 1962, 7A: 141
53
Neumann G. A model for the calculation of monovacancy and divacancy contributions to the impurity diffusion in noble metals [J]. Phys. Stat. Solidi, 1987, 144B: 329
54
Neumann G, Tölle V, Tuijn C, et al. A modified thermodynamic model for the impurity diffusion via nearest- and next-nearest neighbour jumps in body-centred cubic metals of the groups V and VI [J]. Physica, 1997, 233B: 161
55
Lazarus D. Effect of screening on solute diffusion in metals [J]. Phys. Rev., 1954, 93: 973
doi: 10.1103/PhysRev.93.973
56
Rabinovitch A, Pelleg J. A simple model for impurity diffusion [J]. J. Phys., 1977, 7F: 1853
57
Shang S L, Zhou B C, Wang W Y, et al. A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients [J]. Acta Mater., 2016, 109: 128
doi: 10.1016/j.actamat.2016.02.031
58
Mantina M, Wang Y, Chen L Q, et al. First principles impurity diffusion coefficients [J]. Acta Mater., 2009, 57: 4102
doi: 10.1016/j.actamat.2009.05.006
59
Andersson D A, Simak S I. Monovacancy and divacancy formation and migration in copper: A first-principles theory [J]. Phys. Rev., 2004, 70B: 115108
60
Hargather C Z, Shang S L, Liu Z K. A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate [J]. Acta Mater., 2018, 157: 126
doi: 10.1016/j.actamat.2018.07.020
61
Ganeshan S, Hector L G, Liu Z K. First-principles calculations of impurity diffusion coefficients in dilute Mg alloys using the 8-frequency model [J]. Acta Mater., 2011, 59: 3214
doi: 10.1016/j.actamat.2011.01.062
62
Lu H J, Wu H, Zou N, et al. First-principles investigation on diffusion mechanism of alloying elements in dilute Zr alloys [J]. Acta Mater., 2018, 154: 161
doi: 10.1016/j.actamat.2018.05.015
63
Zou N, Lu H J, Lu X G. Impurity diffusion coefficients in BCC Nb from first-principles calculations [J]. J. Alloys Compd., 2019, 803: 684
doi: 10.1016/j.jallcom.2019.06.293
64
Zeng Y Z, Bai K W. High-throughput prediction of activation energy for impurity diffusion in fcc metals of Group I and VIII [J]. J. Alloys Compd., 2015, 624: 201
doi: 10.1016/j.jallcom.2014.11.091
65
Wu H, Lorenson A, Anderson B, et al. Robust FCC solute diffusion predictions from ab-initio machine learning methods [J]. Comput. Mater. Sci., 2017, 134: 160
doi: 10.1016/j.commatsci.2017.03.052
66
Lu H J, Zou N, Jacobs R, et al. Error assessment and optimal cross-validation approaches in machine learning applied to impurity diffusion [J]. Comput. Mater. Sci., 2019, 169: 109075
doi: 10.1016/j.commatsci.2019.06.010
67
Wei Z B, Yu J X, Lu Y, et al. Prediction of diffusion coefficients in fcc, bcc and hcp phases remained stable or metastable by the machine-learning methods [J]. Mater. Des., 2021, 198: 109287
doi: 10.1016/j.matdes.2020.109287
68
Smith W F, Hashemi J. Foundations of Materials Science and Engineering [M]. 4th Ed., New York: McGraw-Hill Publishing, 2006: 1
69
Matano C. On the relation between diffusion-coefficients and concentrations of solid metals [J]. Jpn. J. Appl. Phys., 1933, 8: 109
70
den Broeder F J A. A general simplification and improvement of the matano-boltzmann method in the determination of the interdiffusion coefficients in binary systems [J]. Scr. Metall., 1969, 3: 321
doi: 10.1016/0036-9748(69)90296-8
71
Kirkaldy J S. Diffusion in multicomponent metallic systems [J]. Can. J. Phys., 1957, 35: 435
doi: 10.1139/p57-047
72
Whittle D P, Green A. The measurement of diffusion coefficients in ternary systems [J]. Scr. Metall., 1974, 8: 883
doi: 10.1016/0036-9748(74)90311-1
73
Chen W M, Zhang L J, Du Y, et al. A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple [J]. Scr. Mater., 2014, 90-91: 53
doi: 10.1016/j.scriptamat.2014.07.016
74
Zhong J, Chen W M, Zhang L J. HitDIC: A free-accessible code for high-throughput determination of interdiffusion coefficients in single solution phase [J]. Calphad, 2018, 60: 177
doi: 10.1016/j.calphad.2017.12.004
75
Zhong J, Li Q, Deng C M, et al. Automated development of an accurate diffusion database in FCC AlCoCrFeNi high-entropy alloys from a big dataset of composition profiles [J]. Materials, 2022, 15: 3240
doi: 10.3390/ma15093240
76
Liu F, Wang Z X, Wang Z, et al. High‐throughput method—Accelerated design of Ni-based superalloys [J]. Adv. Funct. Mater., 2022, 32: 2109367
doi: 10.1002/adfm.v32.28
77
Heumann T. Zur berechnung von diffusionskoeffizienten bei ein- und mehrphasiger diffusion in festen legierungen [J]. Z. Phys. Chem., 1952, 201: 168
doi: 10.1515/zpch-1952-20114
78
Fitzer E, Schmidt F K. Die diffusion von silizium in Nb5Si3: The diffusion of silicon in Nb5Si3 [J]. Monatsh. Chem./Chem. Mon., 1971, 102: 1608
79
Darken L S. Diffusion, mobility and their interrelation through free energy in binary metallic system [J]. Trans. AIME, 1948, 175: 184
80
Marian J, Wirth B D, Odette G R, et al. Cu diffusion in α-Fe: Determination of solute diffusivities using atomic-scale simulations [J]. Comput. Mater. Sci., 2004, 31: 347
doi: 10.1016/j.commatsci.2004.03.023
81
Pan L. Atomic simulations of the diffusion process of Cr in Fe-Cr alloy [D]. Nanjing: Nanjing University of Science and Technology, 2015
Maksimenko V N, Lipnitskii A G, Saveliev V N, et al. Prediction of the diffusion characteristics of the V-Cr system by molecular dynamics based on N-body interatomic potentials [J]. Comput. Mater. Sci., 2021, 198: 110648
doi: 10.1016/j.commatsci.2021.110648
83
Huang X S, Liu L H, Duan X B, et al. Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential [J]. Mater. Des., 2021, 202: 109560
doi: 10.1016/j.matdes.2021.109560
84
Wei Z B, Wang C P, Xu W W, et al. A predictive model of impurity diffusion coefficients in face-centered-cubic metallic systems based on machine-learning [J]. Calphad, 2021, 72: 102251
doi: 10.1016/j.calphad.2021.102251
85
Wei Z B. Establishment and application of kinetic databases for the novel Co-based and Nb-Si-based high-temperature alloys [D]. Xiamen: Xiamen University, 2022
Zhang L, Du Y, Ouyang Y, et al. Atomic mobilities, diffusivities and simulation of diffusion growth in the Co-Si system [J]. Acta Mater., 2008, 56: 3940
doi: 10.1016/j.actamat.2008.04.017
87
Cui Y W, Jiang M, Ohnuma I, et al. Computational study of atomic mobility for fcc phase of Co-Fe and Co-Ni binaries [J]. J. Phase Equilib. Diffus., 2008, 29: 2
doi: 10.1007/s11669-007-9238-z
88
Cui Y W, Tang B, Kato R, et al. Interdiffusion and atomic mobility for face-centered-cubic Co-Al alloys [J]. Metall. Mater. Trans., 2011, 42A: 2542
89
Liu Y J, Zhang L J, Pan T Y, et al. Study of diffusion mobilities of Nb and Zr in bcc Nb-Zr alloys [J]. Calphad, 2008, 32: 455
doi: 10.1016/j.calphad.2008.06.008
90
Liu Y J, Pan T Y, Zhang L J, et al. Kinetic modeling of diffusion mobilities in bcc Ti-Nb alloys [J]. J. Alloys Compd., 2009, 476: 429
doi: 10.1016/j.jallcom.2008.09.019
91
Liu Y J, Yu D, Zhang L J, et al. Atomic mobilities and diffusional growth in solid phases of the V-Nb and V-Zr systems [J]. Calphad, 2009, 33: 425
doi: 10.1016/j.calphad.2008.12.008
92
Yang Y L, Shi Z, Luo Y S, et al. Interdiffusion and atomic mobility studies in Ni-rich fcc Ni-Co-Al alloys [J]. J. Phase Equilib. Diffus., 2016, 37: 269
doi: 10.1007/s11669-016-0453-3
93
Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in fcc Co-Cr-Mo Alloys [J]. J. Phase Equilib. Diffus., 2018, 39: 437
doi: 10.1007/s11669-018-0657-9
94
Wang C P, Yu X, Qin S Y, et al. Interdiffusion and atomic mobilities in fcc Ni-Mo-Ta alloys [J]. J. Phase Equilib. Diffus., 2019, 40: 432
doi: 10.1007/s11669-019-00739-7
95
Liu X J, Yu Y, Lu Y, et al. Interdiffusion and atomic mobilities in Co-rich fcc Co-Cr-V alloys [J]. Rare Met. Mater. Eng., 2018, 47: 3251
doi: 10.1016/S1875-5372(18)30228-5
96
Wang C P, Qin S Y, Lu Y, et al. Interdiffusion and atomic mobilities in Ni-rich fcc Ni-Cr-W Alloys [J]. Rare Met. Mater. Eng., 2020, 49: 441
97
Wei Z B, Wang C P, Qin S Y, et al. Assessment of atomic mobilities for bcc phase in the Ti-Nb-V system [J]. J. Phase Equilib. Diffus., 2020, 41: 191
doi: 10.1007/s11669-020-00801-9
98
Chen Q, Jou H J, Sterner G. TC-PRISMA User's Guide and Examples [M]. Stockholm: Thermo-Calc Software AB, 2011: 1
99
Wang Y. Study on the thermodynamics of the Ni-Co-Al-Mo-W system and the diffusion kinetics of its fcc phase [D]. Shanghai: Shanghai University, 2018
Azzam A, Philippe T, Hauet A, et al. Kinetics pathway of precipitation in model Co-Al-W superalloy [J]. Acta Mater., 2018, 145: 377
doi: 10.1016/j.actamat.2017.12.032
101
Wang W, Hou Z Y, Lizárraga R, et al. An experimental and theoretical study of duplex fcc + hcp cobalt based entropic alloys [J]. Acta Mater., 2019, 176: 11
doi: 10.1016/j.actamat.2019.06.041
102
Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
103
Rabbe D, translated by Xiang J Z, Wu X H. Computational Materials Science [M]. Beijing: Chemical Industry Press, 2002: 1
Shi S J, Yan Z W, Li Y S, et al. Phase-field simulation of early-stage kinetics evolution of γ' phase in medium supersaturation Co-Al-W alloy [J]. J. Mater. Sci. Technol., 2020, 53: 1
doi: 10.1016/j.jmst.2020.02.038
106
Chen J, Guo M, Yang M, et al. Phase-field simulation of γ' coarsening behavior in cobalt-based superalloy [J]. Comput. Mater. Sci., 2021, 191: 110358
doi: 10.1016/j.commatsci.2021.110358
107
Liu X J, Kong H F, Lu Y, et al. Phase-field simulation on microstructure evolution of D019 phase in γ/γ′ structure of Co-Al-W superalloys [J]. Prog. Nat. Sci.: Mater. Int., 2020, 30: 382
doi: 10.1016/j.pnsc.2020.05.004
108
Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063