Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (6): 744-756    DOI: 10.11900/0412.1961.2022.00593
Overview Current Issue | Archive | Adv Search |
Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection
GUO Fu(), DU Yihui, JI Xiaoliang, WANG Yishu
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Cite this article: 

GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection. Acta Metall Sin, 2023, 59(6): 744-756.

Download:  HTML  PDF(1325KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Over the past few decades, electronic products have evolved towards miniaturization, intelligence, and multi-functionality. With the rapid development of new energy vehicles and 5G mobile communication technologies, solder, the most commonly used interconnecting material in the microelectronic industry, may continuously undergo alternating temperature excursions. As a result, researchers have focused on improving the thermomechanical reliability of solder joints. For several decades, researchers have widely studied Sn-based lead-free solder and have established that adding an alloying element or foreign reinforcement can overcome the limitations of traditional Sn-based binary/ternary solder, resulting in highly reliable solder joints. Recently, the interest in Sn-based alloys and composite solders has increased due to their improved mechanical performance. However, various concerns, such as high manufacturing costs, microstructural heterogeneity, and incomplete reliability data. This paper reviews the latest research progress on Sn-based lead-free solders for microelectronic interconnection over the past five years, in particular Sn-based multi-element alloys and composite solders. First, the advantages and disadvantages of typical solder preparation methods are compared and discussed. Second, the effects of an alloying element or foreign reinforcement additions on the solder's microstructure, properties, and thermomechanical reliability are summarized. Finally, this paper presents the main problems in preparing and investigating Sn-based lead-free solders and proposes tentative solutions. The aim is to provide an essential basis for understanding the current development and future research directions for fast-evolving future application scenarios.

Key words:  microelectronic interconnection      Sn-based lead-free solder      microstructure and property      thermo-mechanical reliability     
Received:  21 November 2022     
ZTFLH:  TG425.1  
Fund: National Natural Science Foundation of China(52001013);China Postdoctoral Science Foundation(2022M710271);Research and Development Program of Beijing Municipal Education Commission(KZ202210005002);Research and Development Program of Beijing Municipal Education Commission(KM202310005011)
Corresponding Authors:  GUO Fu, professor, Tel:13911892016, E-mail: guofu@bjut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00593     OR     https://www.ams.org.cn/EN/Y2023/V59/I6/744

Fig.1  CeO2 nanoparticles on the surface of an SAC0307-0.3CeO2 solder matrix[21]
Fig.2  Temperature profile of Sn-based solder with added Cr[31] (RT—room temperature)
Fig.3  Schematic showing the alloy vacuum melting method[35]
Fig.4  Distribution of ZnO nanoparticles within the SAC305-ZnO solder[36]
Fig.5  TEM image of multi-walled carbon nanotubes (MWCNTs) coated by Ag nanoparticles[80]
Type of reinforcementSolder alloy (mass fraction / %)ω (mass fraction / %)Ref.
Ni-GNSsSn-2.5Ag-0.7Cu> 0.05[81]
Sn-CNTsSn-58Bi> 0.1[82,83]
Cu-CNFsSn-3.5Ag> 0.05[84]
Ni-CNTsSn-3.5Ag-0.7Cu> 0.05[85,86]
Ni-CNTsSn-3.5Ag-0.7Cu0.2[73]
Ni-CNTsSAC305> 0.05[87]
Ni-CNTsSn-58Bi> 0.05[88]
Ni-CNTsSn-58Bi0.2[89,90]
Ni-CNTsSn-0.7Cu> 0.075[91]
Ni-CNTsSn-57.6Bi-0.4Ag> 0.07[72]
Ag-CNTsSAC3050.1[92]
Ag-CNTsSn-58Bi> 0.05[80]
Ag-CNTsSn-58Bi> 0.1[93-95]
Ag-GNSsSAC305> 0.05[30,96]
Table 1  Addition amount corresponding to properties deterioration caused by metal modified non-metallic reinforcement agglomeration[30,72,73,80-96]
Fig.6  Illustrations of intermetallic compounds (IMCs) growth in solder matrix during thermal cycling[107] (TC—thermal cycling, NP—nanoparticle)
Fig.7  Schematic of the fracture pathway for SAC0307-0.06Pr/Cu and SAC0307-0.06Pr-0.06Al2O3/Cu solder joint after aging treatment for 840 h[108]
1 Lall P, Yadav V, Suhling J, et al. Evolution of Anand parameters for thermally aged Sn-Ag-Cu lead-free alloys at low operating temperature [J]. J. Electron. Packag., 2022, 144: 021116
2 Zhong S J, Zhang L, Li M L, et al. Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties [J]. Mater. Des., 2022, 215: 110439
doi: 10.1016/j.matdes.2022.110439
3 Samavatian M, Ilyashenko L K, Surendar A, et al. Effects of system design on fatigue life of solder joints in BGA packages under vibration at random frequencies [J]. J. Electron. Mater., 2018, 47: 6781
doi: 10.1007/s11664-018-6600-3
4 Hommel M, Knab H, Yousef S G. Reliability of automotive and consumer MEMS sensors—An overview [J]. Microelectron. Reliab., 2021, 126: 114252
doi: 10.1016/j.microrel.2021.114252
5 Cheng S F, Huang C M, Pecht M. A review of lead-free solders for electronics applications [J]. Microelectron. Reliab., 2017, 75: 77
doi: 10.1016/j.microrel.2017.06.016
6 Zhang L, He C W, Guo Y H, et al. Development of SnAg-based lead free solders in electronics packaging [J]. Microelectron. Reliab., 2012, 52: 559
doi: 10.1016/j.microrel.2011.10.006
7 Zhao M, Zhang L, Liu Z Q, et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging [J]. Sci. Technol. Adv. Mater., 2019, 20: 421
doi: 10.1080/14686996.2019.1591168
8 Yang F, Zhang L, Liu Z Q, et al. Properties and microstructures of Sn-Bi-X lead-free solders [J]. Adv. Mater. Sci. Eng., 2016, 2016: 9265195
9 Wang F J, Chen H, Huang Y, et al. Recent progress on the development of Sn-Bi based low-temperature Pb-free solders [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 3222
doi: 10.1007/s10854-019-00701-w
10 Li Y, Lim A B Y, Luo K M, et al. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In-48Sn/Cu solder interconnects under current stressing [J]. J. Alloys Compd., 2016, 673: 372
doi: 10.1016/j.jallcom.2016.02.244
11 Liu S, Xue S B, Xue P, et al. Present status of Sn-Zn lead-free solders bearing alloying elements [J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 4389
doi: 10.1007/s10854-014-2659-7
12 Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
13 Wang X, Zhang L, Li M L. Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: A review [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 2259
doi: 10.1007/s10854-021-07437-6
14 Li S, Wang X X, Liu Z Y, et al. Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys [J]. J. Nanomater., 2020, 2020: 8843166
15 Chen G, Wu Y F. Main application limitations of lead-free composite solder doped with foreign reinforcements [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 24644
doi: 10.1007/s10854-021-06938-8
16 Rajendran S H, Cho D H, Jung J P. Comparative study on the wettability and thermal aging characteristics of SAC305 nanocomposite solder fabricated by stir-casting and ultrasonic treatment [J]. Mater. Today Commun., 2022, 31: 103814
17 Zhao Z L, Liu X, Li R, et al. Study on solder joint of SAC0307 solder paste reinforced by nano Ag/Cu particles [J]. Trans. China Weld. Inst., 2018, 39(9): 95
赵智力, 刘 鑫, 李 睿 等. 纳米颗粒增强SAC0307锡膏焊点的分析 [J]. 焊接学报, 2018, 39(9): 95
doi: 10.12073/j.hjxb.2018390231
18 Xin T, Sun F L, Liu Y, et al. Study on the formation mechanism of porosity and properties of the SAC305-nano Cu composite solder paste reflowed [J]. Trans. China Weld. Inst., 2017, 38(11): 61
辛 瞳, 孙凤莲, 刘 洋 等. SAC305-纳米铜复合焊膏焊后性能及孔隙形成机理 [J]. 焊接学报, 2017, 38(11): 61
19 Zhu Z, Chan Y C, Chen Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder [J]. Mater. Sci. Eng., 2018, A727: 160
20 Li M L, Zhang L, Jiang N, et al. Influences of silicon carbide nanowires' addition on IMC growth behavior of pure Sn solder during solid-liquid diffusion [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 18067
doi: 10.1007/s10854-021-06348-w
21 Tang Y, Guo Q W, Luo S M, et al. Formation and growth of interfacial intermetallics in Sn-0.3Ag-0.7Cu-xCeO2/Cu solder joints during the reflow process [J]. J. Alloys Compd., 2019, 778: 741
doi: 10.1016/j.jallcom.2018.11.156
22 Wu J, Xue S B, Wang J W, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 7372
doi: 10.1007/s10854-018-8727-7
23 Chellvarajoo S, Abdullah M Z. Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process [J]. Mater. Des., 2016, 90: 499
doi: 10.1016/j.matdes.2015.10.142
24 Chen G, Cui X Z, Wu Y F, et al. Microstructural, compositional and hardness evolutions of 96.5Sn-3Ag-0.5Cu/TiC composite solder under thermo-migration stressing [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 9492
doi: 10.1007/s10854-020-03491-8
25 Chen G, Cui X Z, Wu Y F, et al. Performance of 96.5Sn-3Ag-0.5Cu/fullerene composite solder under isothermal ageing and high-current stressing [J]. Soldering Surf. Mount Technol., 2021, 33: 35
doi: 10.1108/SSMT-02-2020-0004
26 Mohd Salleh M A A, Mcdonald S D, Terada Y, et al. Development of a microwave sintered TiO2 reinforced Sn-0.7wt%Cu-0.05wt%Ni alloy [J]. Mater. Des., 2015, 82: 136
doi: 10.1016/j.matdes.2015.05.077
27 Shin H, Lee S, Suk Jung H, et al. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill [J]. Ceram. Int., 2013, 39: 8963
doi: 10.1016/j.ceramint.2013.04.093
28 Li Y, Xu L Y, Jing H Y, et al. Homogeneous dispersion of graphene and interface metallurgical bonding in Sn-Ag-Cu alloy induced by ball milling [J]. Mater. Sci. Eng., 2021, A824: 141823
29 Jing H Y, Guo H J, Wang L X, et al. Influence of Ag-modified graphene nanosheets addition into Sn-Ag-Cu solders on the formation and growth of intermetallic compound layers [J]. J. Alloys Compd., 2017, 702: 669
doi: 10.1016/j.jallcom.2017.01.286
30 Han Y D, Gao Y, Zhang S T, et al. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation [J]. Mater. Sci. Eng., 2019, A761: 138051
31 Bang J, Yu D Y, Ko Y H, et al. Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate [J]. Microelectron. Reliab., 2019, 99: 62
doi: 10.1016/j.microrel.2019.05.019
32 Wang Y, Wang Y S, Ma L M, et al. Effect of Sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater., 2020, 49: 2159
doi: 10.1007/s11664-019-07897-x
33 Wang Y, Wang Y S, Han J, et al. Effects of Sn grain c-axis on electromigration in Cu reinforced composite solder joints [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 5954
doi: 10.1007/s10854-018-8568-4
34 Wang Y, Han J, Guo F, et al. Effects of grain orientation on the electromigration of Cu-reinforced composite solder joints [J]. J. Electron. Mater., 2017, 46: 5877
doi: 10.1007/s11664-017-5585-7
35 Wen Y N, Zhao X C, Chen Z, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles [J]. J. Alloys Compd., 2017, 696: 799
doi: 10.1016/j.jallcom.2016.12.037
36 Hammad A E, Ibrahiem A A. Enhancing the microstructure and tensile creep resistance of Sn-3.0Ag-0.5Cu solder alloy by reinforcing nano-sized ZnO particles [J]. Microelectron. Reliab., 2017, 75: 187
doi: 10.1016/j.microrel.2017.07.034
37 Abd El-Rehim A F, Zahran H Y, Yassin A M. Microstructure evolution and tensile creep behavior of Sn-0.7Cu lead-free solder reinforced with ZnO nanoparticles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 2213
doi: 10.1007/s10854-018-0492-0
38 Mansour M M, Fawzy A, Wahab L A, et al. Tensile characteristics of Sn-5wt%Sb-1.5wt%Ag reinforced by Nano-sized ZnO particles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 4831
doi: 10.1007/s10854-019-00777-4
39 Callister W D, Rethwisch D G. Materials science and engineering [M]. 9th Ed., Hoboken: John Wiley and Sons Ltd., 2014: 3
40 Nguyen V S, Rouxel D, Hadji R, et al. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions [J]. Ultrason. Sonochem., 2011, 18: 382
doi: 10.1016/j.ultsonch.2010.07.003 pmid: 20667760
41 Li J W, Momono T, Tayu Y, et al. Application of ultrasonic treating to degassing of metal ingots [J]. Mater. Lett., 2008, 62: 4152
doi: 10.1016/j.matlet.2008.06.016
42 Li Q, Qiu F, Dong B X, et al. Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration [J]. Mater. Sci. Eng., 2018, A735: 310
43 Li M L, Zhang L, Jiang N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review [J]. Mater. Des., 2021, 197: 109224
doi: 10.1016/j.matdes.2020.109224
44 Shen J, Pu Y Y, Yin H G, et al. Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys [J]. J. Alloys Compd., 2014, 614: 63
doi: 10.1016/j.jallcom.2014.06.015
45 Wei Y H, Zhao X C, Liu Z C, et al. Impact of precipitated phases on the microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. J. Alloys Compd., 2022, 903: 163882
doi: 10.1016/j.jallcom.2022.163882
46 Wei Y H, Zhao X C, Liu Z C, et al. Effects of various second phase ratios and contents on microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. Mater. Des., 2022, 218: 110698
doi: 10.1016/j.matdes.2022.110698
47 Nurulakmal M S, Aili Zuriatie N. Effect of Zn and in to microstructure of aged SAC305/Cu joint [J]. Mater. Today: Proc., 2022, 66: 3014
48 Kong X X, Zhai J J, Sun F L, et al. Combined effect of Bi and Ni elements on the mechanical properties of low-Ag Cu/Sn-0.7Ag-0.5Cu/Cu solder joints [J]. Microelectron. Reliab., 2020, 107: 113618
doi: 10.1016/j.microrel.2020.113618
49 Du Y H, Wang Y S, Ji X L, et al. Impact of Ni-coated carbon fiber on the interfacial (Cu,Ni)6Sn5 growth of Sn-3.5Ag composite solder on Cu substrate during reflow and isothermal aging [J]. Mater. Today Commun., 2022, 31: 103572
50 Sivakumar P, O'donnell K, Cho J. Effects of bismuth and nickel on the microstructure evolution of Sn-Ag-Cu (SAC)-based solders [J]. Mater. Today Commun., 2021, 26: 101787
51 Beáta Š, Erika H, Ingrid K. Development of SnAgCu solders with Bi and In additions and microstructural characterization of joint interface [J]. Weld. World, 2017, 61: 613
doi: 10.1007/s40194-017-0446-9
52 Chen Y Y, You K D, Yu S T, et al. Optimization of mechanical properties of Sn-3.8Ag-0.7Cu alloys by the additions of Bi, In and Ti [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 643
doi: 10.1016/j.pnsc.2022.10.004
53 Rashidi R, Naffakh-Moosavy H. Metallurgical, physical, mechanical and oxidation behavior of lead-free chromium dissolved Sn-Cu-Bi solders [J]. J. Mater. Res. Technol., 2021, 13: 1805
doi: 10.1016/j.jmrt.2021.05.055
54 Rashidi R, Naffakh-Moosavy H. The influence of chromium addition on the metallurgical, mechanical and fracture aspects of Sn-Cu-Bi/Cu solder joint [J]. J. Mater. Res. Technol., 2021, 15: 3321
doi: 10.1016/j.jmrt.2021.10.015
55 Albrecht H J, Bartl K H G, Kruppa W, et al. Soldering material based on Sn Ag and Cu [P]. US Pat, 10376994B2, 2019
56 Tao Q B, Benabou L, Nguyen Van T A, et al. Isothermal aging and shear creep behavior of a novel lead-free solder joint with small additions of Bi, Sb and Ni [J]. J. Alloys Compd., 2019, 789: 183
doi: 10.1016/j.jallcom.2019.02.316
57 Zhong Y, Liu W, Wang C Q, et al. The influence of strengthening and recrystallization to the cracking behavior of Ni, Sb, Bi alloyed SnAgCu solder during thermal cycling [J]. Mater. Sci. Eng., 2016, A652: 264
58 Zhu T K, Zhang Q K, Bai H L, et al. Investigations on deformation and fracture behaviors of the multi-alloyed SnAgCu solder and solder joint by in-situ observation [J]. Microelectron. Reliab., 2022, 135: 114574
doi: 10.1016/j.microrel.2022.114574
59 Lee N C, Geng J, Zhang H W, et al. Novel solder alloy with wide service temperature capability for automotive applications [A]. 2018 IEEE 68th Electronic Components and Technology Conference [C]. San Diego: IEEE, 2018: 2336
60 Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and Nano particles [J]. Mater. Sci. Eng., 2014, R82: 1
61 Kanlayasiri K, Mongkolwongrojn M, Ariga T. Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy [J]. J. Alloys Compd., 2009, 485: 225
doi: 10.1016/j.jallcom.2009.06.020
62 Mehreen S U, Nogita K, Mcdonald S D, et al. Effect of Ni, Zn, Au, Sb and In on the suppression of the Cu3Sn phase in Sn-10 wt.%Cu alloys [J]. J. Electron. Mater., 2021, 50: 881
doi: 10.1007/s11664-020-08709-3
63 Tikale S, Prabhu K N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles [J]. Mater. Sci. Eng., 2020, A787: 139439
64 Huo F P, Jin Z, Le Han D, et al. Interface design and the strengthening-ductility behavior of tetra-needle-like ZnO whisker reinforced Sn1.0Ag0.5Cu composite solders prepared with ultrasonic agitation [J]. Mater. Des., 2021, 210: 110038
doi: 10.1016/j.matdes.2021.110038
65 Yin L M, Zhang Z W, Su Z L, et al. Interfacial microstructure evolution and properties of Sn-0.3Ag-0.7Cu-xSiC solder joints [J]. Mater. Sci. Eng., 2021, A809: 140995
66 Li Z H, Tang Y, Guo Q W, et al. Effects of CeO2 nanoparticles addition on shear properties of low-silver Sn-0.3Ag-0.7Cu-xCeO2 solder alloys [J]. J. Alloys Compd., 2019, 789: 150
doi: 10.1016/j.jallcom.2019.03.013
67 Dele-Afolabi T T, Azmah Hanim M A, Ojo-Kupoluyi O J, et al. Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn-5Sb solder composites on Cu substrate [J]. J. Alloys Compd., 2019, 808: 151714
doi: 10.1016/j.jallcom.2019.151714
68 Vidyatharran K, Azmah Hanim M A, Dele-Afolabi T T, et al. Microstructural and shear strength properties of GNSs-reinforced Sn-1.0Ag-0.5Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish [J]. J. Mater. Res. Technol., 2021, 15: 2497
doi: 10.1016/j.jmrt.2021.09.067
69 Jung D H, Sharma A, Jung J P. Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor [J]. J. Alloys Compd., 2018, 743: 300
doi: 10.1016/j.jallcom.2018.02.017
70 Mo L P, Hu S C, Zhou Z, et al. Wettability and shear strength of SAC305 based composite solder with co-doping X (Ni or Al2O3) and CNTs reinforcements [A]. 19th International Conference on Electronic Packaging Technology [C]. Shanghai: IEEE, 2018: 1415
71 Yao P, Liu P, Liu J. Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu-xNi composite solder joints on electrolytic Ni/Au metallized substrate [J]. J. Alloys Compd., 2008, 462: 73
doi: 10.1016/j.jallcom.2007.08.041
72 Sun H Y, Chan Y C, Wu F S. Effect of CNTs and Ni coated CNTs on the mechanical performance of Sn57.6Bi0.4Ag BGA solder joints [J]. Mater. Sci. Eng., 2016, A656: 249
73 Khodabakhshi F, Zareghomsheh M, Khatibi G. Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes [J]. Mater. Sci. Eng., 2020, A797: 140203
74 Sayyadi R, Khodabakhshi F, Javid N S, et al. Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn-Ag-Cu/Cu soldered joint [J]. J. Mater. Res. Technol., 2020, 9: 8953
doi: 10.1016/j.jmrt.2020.06.026
75 Pal M K, Gergely G, Koncz-Horváth D, et al. Investigation of the electroless nickel plated sic particles in SAC305 solder matrix [J]. Powder Metall. Met. Ceram., 2020, 58: 529
doi: 10.1007/s11106-020-00107-y
76 Gain A K, Chan Y C. The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn-Ag-Cu solder on OSP-Cu pads [J]. Intermetallics, 2012, 29: 48
doi: 10.1016/j.intermet.2012.04.019
77 Yakymovych A, Švec P, Orovcik L, et al. Nanocomposite SAC solders: The effect of adding Ni and Ni-Sn nanoparticles on morphology and mechanical properties of Sn-3.0Ag-0.5Cu solders [J]. J. Electron. Mater., 2018, 47: 117
doi: 10.1007/s11664-017-5834-9
78 Lai Y Q, Hu X W, Jiang X X, et al. Effect of Ni addition to Sn0.7Cu solder alloy on thermal behavior, microstructure, and mechanical properties [J]. J. Mater. Eng. Perform., 2018, 27: 6564
doi: 10.1007/s11665-018-3734-7
79 Gain A K, Zhang L C. Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-Ag-Cu alloy [J]. Materialia, 2019, 5: 100234
doi: 10.1016/j.mtla.2019.100234
80 Kim J, Jung K H, Kim J H, et al. Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB [J]. J. Alloys Compd., 2019, 775: 581
doi: 10.1016/j.jallcom.2018.10.028
81 Wang H G, Zhang K K, Zhang M. Fabrication and properties of Ni-modified graphene nanosheets reinforced Sn-Ag-Cu composite solder [J]. J. Alloys Compd., 2019, 781: 761
doi: 10.1016/j.jallcom.2018.12.080
82 Park H J, Lee C J, Min K D, et al. Microstructures and mechanical properties of the Sn58wt.%Bi composite solders with Sn decorated MWCNT particles [J]. J. Electron. Mater., 2019, 48: 1746
doi: 10.1007/s11664-018-06882-0
83 Lee C J, Min K D, Park H J, et al. Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi solder [J]. Electron. Mater. Lett., 2019, 15: 693
doi: 10.1007/s13391-019-00176-1
84 Sharma A, Srivastava A K, Ahn B. Microstructure, wetting, and tensile behaviors of Sn-Ag alloy reinforced with copper-coated carbon nanofibers produced by the melting and casting route [J]. Metall. Mater. Trans., 2019, 50A: 5384
85 Han Y D, Nai S M L, Jing H Y, et al. Development of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2011, 22: 315
doi: 10.1007/s10854-010-0135-6
86 Yang Z B, Zhou W, Wu P. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn-Ag-Cu solder alloys [J]. Mater. Sci. Eng., 2014, A590: 295
87 Qu M, Gao Z X, Chen J, et al. Effect of Ni-coated carbon nanotubes addition on the wettability, microhardness, and shear strength of Sn-3.0Ag-0.5Cu/Cu lead-free solder joints [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 10866
doi: 10.1007/s10854-022-08067-2
88 Yang L Z, Zhou W, Liang Y H, et al. Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes [J]. Mater. Sci. Eng., 2015, A642: 7
89 Lee C J, Hwang B U, Min K D, et al. Bending reliability of Ni-MWCNT composite solder with a differential structure [J]. Microelectron. Reliab., 2020, 113: 113934
doi: 10.1016/j.microrel.2020.113934
90 Lee C J, Min K D, Jeong H, et al. The fabrication of Ni-MWCNT composite solder and its reliability under high relative humidity and temperature [J]. J. Electron. Mater., 2020, 49: 6746
doi: 10.1007/s11664-020-08426-x
91 Mao J, Yang W C, Song Q Q, et al. The effects of the addition of CNT@Ni on the hardness, density, wettability and mechanical properties of Sn-0.7Cu lead-free solder [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 10843
doi: 10.1007/s10854-021-05742-8
92 Chantaramanee S, Wisutmethangoon S, Sikong L, et al. Development of a lead-free composite solder from Sn-Ag-Cu and Ag-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2013, 24: 3707
doi: 10.1007/s10854-013-1307-y
93 Min K D, Lee C J, Park H J, et al. Microstructures and mechanical properties of Sn-58wt.% Bi solder with Ag-decorated multiwalled carbon nanotubes under 85oC/85% relative humidity environmental conditions [J]. J. Electron. Mater., 2020, 49: 1527
doi: 10.1007/s11664-019-07863-7
94 Lee C J, Min K D, Park H J, et al. Mechanical properties of Sn-58wt%Bi solder containing Ag-decorated MWCNT with thermal aging tests [J]. J. Alloys Compd., 2020, 820: 153077
doi: 10.1016/j.jallcom.2019.153077
95 Lee C J, Myung W R, Park B G, et al. Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 10170
doi: 10.1007/s10854-020-03562-w
96 Xu L Y, Chen X, Jing H Y, et al. Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders [J]. Mater. Sci. Eng., 2016, A667: 87
97 Dele-Afolabi T T, Hanim M A A, Calin R, et al. Microstructure evolution and hardness of MWCNT-reinforced Sn-5Sb/Cu composite solder joints under different thermal aging conditions [J]. Microelectron. Reliab., 2020, 110: 113681
doi: 10.1016/j.microrel.2020.113681
98 Sun R, Sui Y W, Qi J Q, et al. Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder [J]. J. Electron. Mater., 2017, 46: 4197
doi: 10.1007/s11664-017-5374-3
99 Yassin A M, Zahran H Y, Abd El-Rehim A F. Effect of TiO2 nanoparticles addition on the thermal, microstructural and room-temperature creep behavior of Sn-Zn based solder [J]. J. Electron. Mater., 2018, 47: 6984
doi: 10.1007/s11664-018-6624-8
100 Choi K, Yu D Y, Ahn S, et al. Joint reliability of various Pb-free solders under harsh vibration conditions for automotive electronics [J]. Microelectron. Reliab., 2018, 86: 66
doi: 10.1016/j.microrel.2018.05.006
101 Wang Y, Zhao X C, Liu Y, et al. Microstructure, wetting property of Sn-Ag-Cu-Bi-xCe solder and IMC growth at solder/Cu interface during thermal cycling [J]. Rare Met., 2021, 40: 714
doi: 10.1007/s12598-015-0526-1
102 Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions [J]. Mater. Sci. Eng., 2004, R44: 1
103 Wu J, Xue S B, Wang J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn-0.3Ag-0.7Cu low-Ag solder for electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 10230
doi: 10.1007/s10854-017-6790-0
104 Zhang L, Yang F, Zhong S J. Effect of Nd on whiskers growth behavior of SnAgCu solders in electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2016, 27: 9584
doi: 10.1007/s10854-016-5012-5
105 Xue P, He P, Long W M, et al. Influence of rare earths, Ga element and their synergistic effects on the microstructure and properties of lead-free solders [J]. Trans. China Weld. Inst., 2021, 42(4): 1
薛 鹏, 何 鹏, 龙伟民 等. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响 [J]. 焊接学报, 2021, 42(4): 1
106 Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2019, 784: 471
doi: 10.1016/j.jallcom.2019.01.034
107 Wu J, Xue S B, Huang G Q, et al. In-situ synergistic effect of Pr and Al2O3 nanoparticles on enhancing thermal cycling reliability of Sn-0.3Ag-0.7Cu/Cu solder joint [J]. J. Alloys Compd., 2022, 905: 164152
doi: 10.1016/j.jallcom.2022.164152
108 Wu J, Xue S B, Wang J W, et al. Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-0.3Ag-0.7Cu-0.06Pr/Cu solder joints during isothermal aging [J]. J. Alloys Compd., 2019, 799: 124
doi: 10.1016/j.jallcom.2019.05.226
109 El-Daly A A, Eid N A M, Ibrahiem A A. Synergic effect of Te, Ni and MWCNT on creep behavior and microstructural evolution of Sn-1.0Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2022, 902: 163808
doi: 10.1016/j.jallcom.2022.163808
110 El-Daly A A, Ibrahiem A A, Eid N A M. Development of Sn-1.0Ag-0.7Cu composite solder with improved resistivity and strength-ductility synergy through additions of Ni, Te and MWCNT [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 19871
doi: 10.1007/s10854-021-06512-2
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[3] REN Yuan, DONG Xinyuan, SUN Hao, LUO Xiaotao. Oxide Cleaning Effect of In-Flight CuNi Droplet During Atmospheric Plasma Spraying by B Addition[J]. 金属学报, 2022, 58(2): 206-214.
[4] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[5] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[6] QIN Guoliang SU Yuhu WANG Shujun. MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED–FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL[J]. 金属学报, 2012, 48(8): 1018-1024.
[7] CAO Mingzhou;HAN Dong;ZHOU Jing;LI Dong Institute of Metal Research; Academia Sinica; Shenyang Associate professor. MICROSTRUCTURES AND PROPERTIES OF Mn-CONTAINING TiAl ALLOYS[J]. 金属学报, 1990, 26(3): 69-73.
No Suggested Reading articles found!