|
|
Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection |
GUO Fu( ), DU Yihui, JI Xiaoliang, WANG Yishu |
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
|
Cite this article:
GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection. Acta Metall Sin, 2023, 59(6): 744-756.
|
Abstract Over the past few decades, electronic products have evolved towards miniaturization, intelligence, and multi-functionality. With the rapid development of new energy vehicles and 5G mobile communication technologies, solder, the most commonly used interconnecting material in the microelectronic industry, may continuously undergo alternating temperature excursions. As a result, researchers have focused on improving the thermomechanical reliability of solder joints. For several decades, researchers have widely studied Sn-based lead-free solder and have established that adding an alloying element or foreign reinforcement can overcome the limitations of traditional Sn-based binary/ternary solder, resulting in highly reliable solder joints. Recently, the interest in Sn-based alloys and composite solders has increased due to their improved mechanical performance. However, various concerns, such as high manufacturing costs, microstructural heterogeneity, and incomplete reliability data. This paper reviews the latest research progress on Sn-based lead-free solders for microelectronic interconnection over the past five years, in particular Sn-based multi-element alloys and composite solders. First, the advantages and disadvantages of typical solder preparation methods are compared and discussed. Second, the effects of an alloying element or foreign reinforcement additions on the solder's microstructure, properties, and thermomechanical reliability are summarized. Finally, this paper presents the main problems in preparing and investigating Sn-based lead-free solders and proposes tentative solutions. The aim is to provide an essential basis for understanding the current development and future research directions for fast-evolving future application scenarios.
|
Received: 21 November 2022
|
|
Fund: National Natural Science Foundation of China(52001013);China Postdoctoral Science Foundation(2022M710271);Research and Development Program of Beijing Municipal Education Commission(KZ202210005002);Research and Development Program of Beijing Municipal Education Commission(KM202310005011) |
Corresponding Authors:
GUO Fu, professor, Tel:13911892016, E-mail: guofu@bjut.edu.cn
|
1 |
Lall P, Yadav V, Suhling J, et al. Evolution of Anand parameters for thermally aged Sn-Ag-Cu lead-free alloys at low operating temperature [J]. J. Electron. Packag., 2022, 144: 021116
|
2 |
Zhong S J, Zhang L, Li M L, et al. Development of lead-free interconnection materials in electronic industry during the past decades: Structure and properties [J]. Mater. Des., 2022, 215: 110439
doi: 10.1016/j.matdes.2022.110439
|
3 |
Samavatian M, Ilyashenko L K, Surendar A, et al. Effects of system design on fatigue life of solder joints in BGA packages under vibration at random frequencies [J]. J. Electron. Mater., 2018, 47: 6781
doi: 10.1007/s11664-018-6600-3
|
4 |
Hommel M, Knab H, Yousef S G. Reliability of automotive and consumer MEMS sensors—An overview [J]. Microelectron. Reliab., 2021, 126: 114252
doi: 10.1016/j.microrel.2021.114252
|
5 |
Cheng S F, Huang C M, Pecht M. A review of lead-free solders for electronics applications [J]. Microelectron. Reliab., 2017, 75: 77
doi: 10.1016/j.microrel.2017.06.016
|
6 |
Zhang L, He C W, Guo Y H, et al. Development of SnAg-based lead free solders in electronics packaging [J]. Microelectron. Reliab., 2012, 52: 559
doi: 10.1016/j.microrel.2011.10.006
|
7 |
Zhao M, Zhang L, Liu Z Q, et al. Structure and properties of Sn-Cu lead-free solders in electronics packaging [J]. Sci. Technol. Adv. Mater., 2019, 20: 421
doi: 10.1080/14686996.2019.1591168
|
8 |
Yang F, Zhang L, Liu Z Q, et al. Properties and microstructures of Sn-Bi-X lead-free solders [J]. Adv. Mater. Sci. Eng., 2016, 2016: 9265195
|
9 |
Wang F J, Chen H, Huang Y, et al. Recent progress on the development of Sn-Bi based low-temperature Pb-free solders [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 3222
doi: 10.1007/s10854-019-00701-w
|
10 |
Li Y, Lim A B Y, Luo K M, et al. Phase segregation, interfacial intermetallic growth and electromigration-induced failure in Cu/In-48Sn/Cu solder interconnects under current stressing [J]. J. Alloys Compd., 2016, 673: 372
doi: 10.1016/j.jallcom.2016.02.244
|
11 |
Liu S, Xue S B, Xue P, et al. Present status of Sn-Zn lead-free solders bearing alloying elements [J]. J. Mater. Sci.: Mater. Electron., 2015, 26: 4389
doi: 10.1007/s10854-014-2659-7
|
12 |
Curtulo J P, Dias M, Bertelli F, et al. The application of an analytical model to solve an inverse heat conduction problem: Transient solidification of a Sn-Sb peritectic solder alloy on distinct substrates [J]. J. Manuf. Process., 2019, 48: 164
doi: 10.1016/j.jmapro.2019.10.029
|
13 |
Wang X, Zhang L, Li M L. Microstructure and properties of Sn-Ag and Sn-Sb lead-free solders in electronics packaging: A review [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 2259
doi: 10.1007/s10854-021-07437-6
|
14 |
Li S, Wang X X, Liu Z Y, et al. Research status of evolution of microstructure and properties of Sn-based lead-free composite solder alloys [J]. J. Nanomater., 2020, 2020: 8843166
|
15 |
Chen G, Wu Y F. Main application limitations of lead-free composite solder doped with foreign reinforcements [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 24644
doi: 10.1007/s10854-021-06938-8
|
16 |
Rajendran S H, Cho D H, Jung J P. Comparative study on the wettability and thermal aging characteristics of SAC305 nanocomposite solder fabricated by stir-casting and ultrasonic treatment [J]. Mater. Today Commun., 2022, 31: 103814
|
17 |
Zhao Z L, Liu X, Li R, et al. Study on solder joint of SAC0307 solder paste reinforced by nano Ag/Cu particles [J]. Trans. China Weld. Inst., 2018, 39(9): 95
|
|
赵智力, 刘 鑫, 李 睿 等. 纳米颗粒增强SAC0307锡膏焊点的分析 [J]. 焊接学报, 2018, 39(9): 95
doi: 10.12073/j.hjxb.2018390231
|
18 |
Xin T, Sun F L, Liu Y, et al. Study on the formation mechanism of porosity and properties of the SAC305-nano Cu composite solder paste reflowed [J]. Trans. China Weld. Inst., 2017, 38(11): 61
|
|
辛 瞳, 孙凤莲, 刘 洋 等. SAC305-纳米铜复合焊膏焊后性能及孔隙形成机理 [J]. 焊接学报, 2017, 38(11): 61
|
19 |
Zhu Z, Chan Y C, Chen Z, et al. Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder [J]. Mater. Sci. Eng., 2018, A727: 160
|
20 |
Li M L, Zhang L, Jiang N, et al. Influences of silicon carbide nanowires' addition on IMC growth behavior of pure Sn solder during solid-liquid diffusion [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 18067
doi: 10.1007/s10854-021-06348-w
|
21 |
Tang Y, Guo Q W, Luo S M, et al. Formation and growth of interfacial intermetallics in Sn-0.3Ag-0.7Cu-xCeO2/Cu solder joints during the reflow process [J]. J. Alloys Compd., 2019, 778: 741
doi: 10.1016/j.jallcom.2018.11.156
|
22 |
Wu J, Xue S B, Wang J W, et al. Effects of α-Al2O3 nanoparticles-doped on microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 7372
doi: 10.1007/s10854-018-8727-7
|
23 |
Chellvarajoo S, Abdullah M Z. Microstructure and mechanical properties of Pb-free Sn-3.0Ag-0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process [J]. Mater. Des., 2016, 90: 499
doi: 10.1016/j.matdes.2015.10.142
|
24 |
Chen G, Cui X Z, Wu Y F, et al. Microstructural, compositional and hardness evolutions of 96.5Sn-3Ag-0.5Cu/TiC composite solder under thermo-migration stressing [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 9492
doi: 10.1007/s10854-020-03491-8
|
25 |
Chen G, Cui X Z, Wu Y F, et al. Performance of 96.5Sn-3Ag-0.5Cu/fullerene composite solder under isothermal ageing and high-current stressing [J]. Soldering Surf. Mount Technol., 2021, 33: 35
doi: 10.1108/SSMT-02-2020-0004
|
26 |
Mohd Salleh M A A, Mcdonald S D, Terada Y, et al. Development of a microwave sintered TiO2 reinforced Sn-0.7wt%Cu-0.05wt%Ni alloy [J]. Mater. Des., 2015, 82: 136
doi: 10.1016/j.matdes.2015.05.077
|
27 |
Shin H, Lee S, Suk Jung H, et al. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill [J]. Ceram. Int., 2013, 39: 8963
doi: 10.1016/j.ceramint.2013.04.093
|
28 |
Li Y, Xu L Y, Jing H Y, et al. Homogeneous dispersion of graphene and interface metallurgical bonding in Sn-Ag-Cu alloy induced by ball milling [J]. Mater. Sci. Eng., 2021, A824: 141823
|
29 |
Jing H Y, Guo H J, Wang L X, et al. Influence of Ag-modified graphene nanosheets addition into Sn-Ag-Cu solders on the formation and growth of intermetallic compound layers [J]. J. Alloys Compd., 2017, 702: 669
doi: 10.1016/j.jallcom.2017.01.286
|
30 |
Han Y D, Gao Y, Zhang S T, et al. Study of mechanical properties of Ag nanoparticle-modified graphene/Sn-Ag-Cu solders by nanoindentation [J]. Mater. Sci. Eng., 2019, A761: 138051
|
31 |
Bang J, Yu D Y, Ko Y H, et al. Intermetallic compound growth between Sn-Cu-Cr lead-free solder and Cu substrate [J]. Microelectron. Reliab., 2019, 99: 62
doi: 10.1016/j.microrel.2019.05.019
|
32 |
Wang Y, Wang Y S, Ma L M, et al. Effect of Sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater., 2020, 49: 2159
doi: 10.1007/s11664-019-07897-x
|
33 |
Wang Y, Wang Y S, Han J, et al. Effects of Sn grain c-axis on electromigration in Cu reinforced composite solder joints [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 5954
doi: 10.1007/s10854-018-8568-4
|
34 |
Wang Y, Han J, Guo F, et al. Effects of grain orientation on the electromigration of Cu-reinforced composite solder joints [J]. J. Electron. Mater., 2017, 46: 5877
doi: 10.1007/s11664-017-5585-7
|
35 |
Wen Y N, Zhao X C, Chen Z, et al. Reliability enhancement of Sn-1.0Ag-0.5Cu nano-composite solders by adding multiple sizes of TiO2 nanoparticles [J]. J. Alloys Compd., 2017, 696: 799
doi: 10.1016/j.jallcom.2016.12.037
|
36 |
Hammad A E, Ibrahiem A A. Enhancing the microstructure and tensile creep resistance of Sn-3.0Ag-0.5Cu solder alloy by reinforcing nano-sized ZnO particles [J]. Microelectron. Reliab., 2017, 75: 187
doi: 10.1016/j.microrel.2017.07.034
|
37 |
Abd El-Rehim A F, Zahran H Y, Yassin A M. Microstructure evolution and tensile creep behavior of Sn-0.7Cu lead-free solder reinforced with ZnO nanoparticles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 2213
doi: 10.1007/s10854-018-0492-0
|
38 |
Mansour M M, Fawzy A, Wahab L A, et al. Tensile characteristics of Sn-5wt%Sb-1.5wt%Ag reinforced by Nano-sized ZnO particles [J]. J. Mater. Sci.: Mater. Electron., 2019, 30: 4831
doi: 10.1007/s10854-019-00777-4
|
39 |
Callister W D, Rethwisch D G. Materials science and engineering [M]. 9th Ed., Hoboken: John Wiley and Sons Ltd., 2014: 3
|
40 |
Nguyen V S, Rouxel D, Hadji R, et al. Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions [J]. Ultrason. Sonochem., 2011, 18: 382
doi: 10.1016/j.ultsonch.2010.07.003
pmid: 20667760
|
41 |
Li J W, Momono T, Tayu Y, et al. Application of ultrasonic treating to degassing of metal ingots [J]. Mater. Lett., 2008, 62: 4152
doi: 10.1016/j.matlet.2008.06.016
|
42 |
Li Q, Qiu F, Dong B X, et al. Fabrication, microstructure refinement and strengthening mechanisms of nanosized SiCP/Al composites assisted ultrasonic vibration [J]. Mater. Sci. Eng., 2018, A735: 310
|
43 |
Li M L, Zhang L, Jiang N, et al. Materials modification of the lead-free solders incorporated with micro/nano-sized particles: A review [J]. Mater. Des., 2021, 197: 109224
doi: 10.1016/j.matdes.2020.109224
|
44 |
Shen J, Pu Y Y, Yin H G, et al. Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn-Bi-based solder alloys [J]. J. Alloys Compd., 2014, 614: 63
doi: 10.1016/j.jallcom.2014.06.015
|
45 |
Wei Y H, Zhao X C, Liu Z C, et al. Impact of precipitated phases on the microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. J. Alloys Compd., 2022, 903: 163882
doi: 10.1016/j.jallcom.2022.163882
|
46 |
Wei Y H, Zhao X C, Liu Z C, et al. Effects of various second phase ratios and contents on microstructure and mechanical properties of eutectic Sn58Bi alloy [J]. Mater. Des., 2022, 218: 110698
doi: 10.1016/j.matdes.2022.110698
|
47 |
Nurulakmal M S, Aili Zuriatie N. Effect of Zn and in to microstructure of aged SAC305/Cu joint [J]. Mater. Today: Proc., 2022, 66: 3014
|
48 |
Kong X X, Zhai J J, Sun F L, et al. Combined effect of Bi and Ni elements on the mechanical properties of low-Ag Cu/Sn-0.7Ag-0.5Cu/Cu solder joints [J]. Microelectron. Reliab., 2020, 107: 113618
doi: 10.1016/j.microrel.2020.113618
|
49 |
Du Y H, Wang Y S, Ji X L, et al. Impact of Ni-coated carbon fiber on the interfacial (Cu,Ni)6Sn5 growth of Sn-3.5Ag composite solder on Cu substrate during reflow and isothermal aging [J]. Mater. Today Commun., 2022, 31: 103572
|
50 |
Sivakumar P, O'donnell K, Cho J. Effects of bismuth and nickel on the microstructure evolution of Sn-Ag-Cu (SAC)-based solders [J]. Mater. Today Commun., 2021, 26: 101787
|
51 |
Beáta Š, Erika H, Ingrid K. Development of SnAgCu solders with Bi and In additions and microstructural characterization of joint interface [J]. Weld. World, 2017, 61: 613
doi: 10.1007/s40194-017-0446-9
|
52 |
Chen Y Y, You K D, Yu S T, et al. Optimization of mechanical properties of Sn-3.8Ag-0.7Cu alloys by the additions of Bi, In and Ti [J]. Prog. Nat. Sci.: Mater. Int., 2022, 32: 643
doi: 10.1016/j.pnsc.2022.10.004
|
53 |
Rashidi R, Naffakh-Moosavy H. Metallurgical, physical, mechanical and oxidation behavior of lead-free chromium dissolved Sn-Cu-Bi solders [J]. J. Mater. Res. Technol., 2021, 13: 1805
doi: 10.1016/j.jmrt.2021.05.055
|
54 |
Rashidi R, Naffakh-Moosavy H. The influence of chromium addition on the metallurgical, mechanical and fracture aspects of Sn-Cu-Bi/Cu solder joint [J]. J. Mater. Res. Technol., 2021, 15: 3321
doi: 10.1016/j.jmrt.2021.10.015
|
55 |
Albrecht H J, Bartl K H G, Kruppa W, et al. Soldering material based on Sn Ag and Cu [P]. US Pat, 10376994B2, 2019
|
56 |
Tao Q B, Benabou L, Nguyen Van T A, et al. Isothermal aging and shear creep behavior of a novel lead-free solder joint with small additions of Bi, Sb and Ni [J]. J. Alloys Compd., 2019, 789: 183
doi: 10.1016/j.jallcom.2019.02.316
|
57 |
Zhong Y, Liu W, Wang C Q, et al. The influence of strengthening and recrystallization to the cracking behavior of Ni, Sb, Bi alloyed SnAgCu solder during thermal cycling [J]. Mater. Sci. Eng., 2016, A652: 264
|
58 |
Zhu T K, Zhang Q K, Bai H L, et al. Investigations on deformation and fracture behaviors of the multi-alloyed SnAgCu solder and solder joint by in-situ observation [J]. Microelectron. Reliab., 2022, 135: 114574
doi: 10.1016/j.microrel.2022.114574
|
59 |
Lee N C, Geng J, Zhang H W, et al. Novel solder alloy with wide service temperature capability for automotive applications [A]. 2018 IEEE 68th Electronic Components and Technology Conference [C]. San Diego: IEEE, 2018: 2336
|
60 |
Zhang L, Tu K N. Structure and properties of lead-free solders bearing micro and Nano particles [J]. Mater. Sci. Eng., 2014, R82: 1
|
61 |
Kanlayasiri K, Mongkolwongrojn M, Ariga T. Influence of indium addition on characteristics of Sn-0.3Ag-0.7Cu solder alloy [J]. J. Alloys Compd., 2009, 485: 225
doi: 10.1016/j.jallcom.2009.06.020
|
62 |
Mehreen S U, Nogita K, Mcdonald S D, et al. Effect of Ni, Zn, Au, Sb and In on the suppression of the Cu3Sn phase in Sn-10 wt.%Cu alloys [J]. J. Electron. Mater., 2021, 50: 881
doi: 10.1007/s11664-020-08709-3
|
63 |
Tikale S, Prabhu K N. Development of low-silver content SAC0307 solder alloy with Al2O3 nanoparticles [J]. Mater. Sci. Eng., 2020, A787: 139439
|
64 |
Huo F P, Jin Z, Le Han D, et al. Interface design and the strengthening-ductility behavior of tetra-needle-like ZnO whisker reinforced Sn1.0Ag0.5Cu composite solders prepared with ultrasonic agitation [J]. Mater. Des., 2021, 210: 110038
doi: 10.1016/j.matdes.2021.110038
|
65 |
Yin L M, Zhang Z W, Su Z L, et al. Interfacial microstructure evolution and properties of Sn-0.3Ag-0.7Cu-xSiC solder joints [J]. Mater. Sci. Eng., 2021, A809: 140995
|
66 |
Li Z H, Tang Y, Guo Q W, et al. Effects of CeO2 nanoparticles addition on shear properties of low-silver Sn-0.3Ag-0.7Cu-xCeO2 solder alloys [J]. J. Alloys Compd., 2019, 789: 150
doi: 10.1016/j.jallcom.2019.03.013
|
67 |
Dele-Afolabi T T, Azmah Hanim M A, Ojo-Kupoluyi O J, et al. Impact of different isothermal aging conditions on the IMC layer growth and shear strength of MWCNT-reinforced Sn-5Sb solder composites on Cu substrate [J]. J. Alloys Compd., 2019, 808: 151714
doi: 10.1016/j.jallcom.2019.151714
|
68 |
Vidyatharran K, Azmah Hanim M A, Dele-Afolabi T T, et al. Microstructural and shear strength properties of GNSs-reinforced Sn-1.0Ag-0.5Cu (SAC105) composite solder interconnects on plain Cu and ENIAg surface finish [J]. J. Mater. Res. Technol., 2021, 15: 2497
doi: 10.1016/j.jmrt.2021.09.067
|
69 |
Jung D H, Sharma A, Jung J P. Influence of dual ceramic nanomaterials on the solderability and interfacial reactions between lead-free Sn-Ag-Cu and a Cu conductor [J]. J. Alloys Compd., 2018, 743: 300
doi: 10.1016/j.jallcom.2018.02.017
|
70 |
Mo L P, Hu S C, Zhou Z, et al. Wettability and shear strength of SAC305 based composite solder with co-doping X (Ni or Al2O3) and CNTs reinforcements [A]. 19th International Conference on Electronic Packaging Technology [C]. Shanghai: IEEE, 2018: 1415
|
71 |
Yao P, Liu P, Liu J. Effects of multiple reflows on intermetallic morphology and shear strength of SnAgCu-xNi composite solder joints on electrolytic Ni/Au metallized substrate [J]. J. Alloys Compd., 2008, 462: 73
doi: 10.1016/j.jallcom.2007.08.041
|
72 |
Sun H Y, Chan Y C, Wu F S. Effect of CNTs and Ni coated CNTs on the mechanical performance of Sn57.6Bi0.4Ag BGA solder joints [J]. Mater. Sci. Eng., 2016, A656: 249
|
73 |
Khodabakhshi F, Zareghomsheh M, Khatibi G. Nanoindentation creep properties of lead-free nanocomposite solders reinforced by modified carbon nanotubes [J]. Mater. Sci. Eng., 2020, A797: 140203
|
74 |
Sayyadi R, Khodabakhshi F, Javid N S, et al. Influence of graphene content and nickel decoration on the microstructural and mechanical characteristics of the Cu/Sn-Ag-Cu/Cu soldered joint [J]. J. Mater. Res. Technol., 2020, 9: 8953
doi: 10.1016/j.jmrt.2020.06.026
|
75 |
Pal M K, Gergely G, Koncz-Horváth D, et al. Investigation of the electroless nickel plated sic particles in SAC305 solder matrix [J]. Powder Metall. Met. Ceram., 2020, 58: 529
doi: 10.1007/s11106-020-00107-y
|
76 |
Gain A K, Chan Y C. The influence of a small amount of Al and Ni nano-particles on the microstructure, kinetics and hardness of Sn-Ag-Cu solder on OSP-Cu pads [J]. Intermetallics, 2012, 29: 48
doi: 10.1016/j.intermet.2012.04.019
|
77 |
Yakymovych A, Švec P, Orovcik L, et al. Nanocomposite SAC solders: The effect of adding Ni and Ni-Sn nanoparticles on morphology and mechanical properties of Sn-3.0Ag-0.5Cu solders [J]. J. Electron. Mater., 2018, 47: 117
doi: 10.1007/s11664-017-5834-9
|
78 |
Lai Y Q, Hu X W, Jiang X X, et al. Effect of Ni addition to Sn0.7Cu solder alloy on thermal behavior, microstructure, and mechanical properties [J]. J. Mater. Eng. Perform., 2018, 27: 6564
doi: 10.1007/s11665-018-3734-7
|
79 |
Gain A K, Zhang L C. Effects of Ni nanoparticles addition on the microstructure, electrical and mechanical properties of Sn-Ag-Cu alloy [J]. Materialia, 2019, 5: 100234
doi: 10.1016/j.mtla.2019.100234
|
80 |
Kim J, Jung K H, Kim J H, et al. Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB [J]. J. Alloys Compd., 2019, 775: 581
doi: 10.1016/j.jallcom.2018.10.028
|
81 |
Wang H G, Zhang K K, Zhang M. Fabrication and properties of Ni-modified graphene nanosheets reinforced Sn-Ag-Cu composite solder [J]. J. Alloys Compd., 2019, 781: 761
doi: 10.1016/j.jallcom.2018.12.080
|
82 |
Park H J, Lee C J, Min K D, et al. Microstructures and mechanical properties of the Sn58wt.%Bi composite solders with Sn decorated MWCNT particles [J]. J. Electron. Mater., 2019, 48: 1746
doi: 10.1007/s11664-018-06882-0
|
83 |
Lee C J, Min K D, Park H J, et al. Effect of Sn-decorated MWCNTs on the mechanical reliability of Sn-58Bi solder [J]. Electron. Mater. Lett., 2019, 15: 693
doi: 10.1007/s13391-019-00176-1
|
84 |
Sharma A, Srivastava A K, Ahn B. Microstructure, wetting, and tensile behaviors of Sn-Ag alloy reinforced with copper-coated carbon nanofibers produced by the melting and casting route [J]. Metall. Mater. Trans., 2019, 50A: 5384
|
85 |
Han Y D, Nai S M L, Jing H Y, et al. Development of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2011, 22: 315
doi: 10.1007/s10854-010-0135-6
|
86 |
Yang Z B, Zhou W, Wu P. Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn-Ag-Cu solder alloys [J]. Mater. Sci. Eng., 2014, A590: 295
|
87 |
Qu M, Gao Z X, Chen J, et al. Effect of Ni-coated carbon nanotubes addition on the wettability, microhardness, and shear strength of Sn-3.0Ag-0.5Cu/Cu lead-free solder joints [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 10866
doi: 10.1007/s10854-022-08067-2
|
88 |
Yang L Z, Zhou W, Liang Y H, et al. Improved microstructure and mechanical properties for Sn58Bi solder alloy by addition of Ni-coated carbon nanotubes [J]. Mater. Sci. Eng., 2015, A642: 7
|
89 |
Lee C J, Hwang B U, Min K D, et al. Bending reliability of Ni-MWCNT composite solder with a differential structure [J]. Microelectron. Reliab., 2020, 113: 113934
doi: 10.1016/j.microrel.2020.113934
|
90 |
Lee C J, Min K D, Jeong H, et al. The fabrication of Ni-MWCNT composite solder and its reliability under high relative humidity and temperature [J]. J. Electron. Mater., 2020, 49: 6746
doi: 10.1007/s11664-020-08426-x
|
91 |
Mao J, Yang W C, Song Q Q, et al. The effects of the addition of CNT@Ni on the hardness, density, wettability and mechanical properties of Sn-0.7Cu lead-free solder [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 10843
doi: 10.1007/s10854-021-05742-8
|
92 |
Chantaramanee S, Wisutmethangoon S, Sikong L, et al. Development of a lead-free composite solder from Sn-Ag-Cu and Ag-coated carbon nanotubes [J]. J. Mater. Sci.: Mater. Electron., 2013, 24: 3707
doi: 10.1007/s10854-013-1307-y
|
93 |
Min K D, Lee C J, Park H J, et al. Microstructures and mechanical properties of Sn-58wt.% Bi solder with Ag-decorated multiwalled carbon nanotubes under 85oC/85% relative humidity environmental conditions [J]. J. Electron. Mater., 2020, 49: 1527
doi: 10.1007/s11664-019-07863-7
|
94 |
Lee C J, Min K D, Park H J, et al. Mechanical properties of Sn-58wt%Bi solder containing Ag-decorated MWCNT with thermal aging tests [J]. J. Alloys Compd., 2020, 820: 153077
doi: 10.1016/j.jallcom.2019.153077
|
95 |
Lee C J, Myung W R, Park B G, et al. Effect of Ag-decorated MWCNT on the mechanical and thermal property of Sn58Bi solder joints for FCLED package [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 10170
doi: 10.1007/s10854-020-03562-w
|
96 |
Xu L Y, Chen X, Jing H Y, et al. Design and performance of Ag nanoparticle-modified graphene/SnAgCu lead-free solders [J]. Mater. Sci. Eng., 2016, A667: 87
|
97 |
Dele-Afolabi T T, Hanim M A A, Calin R, et al. Microstructure evolution and hardness of MWCNT-reinforced Sn-5Sb/Cu composite solder joints under different thermal aging conditions [J]. Microelectron. Reliab., 2020, 110: 113681
doi: 10.1016/j.microrel.2020.113681
|
98 |
Sun R, Sui Y W, Qi J Q, et al. Influence of SnO2 nanoparticles addition on microstructure, thermal analysis, and interfacial IMC growth of Sn1.0Ag0.7Cu solder [J]. J. Electron. Mater., 2017, 46: 4197
doi: 10.1007/s11664-017-5374-3
|
99 |
Yassin A M, Zahran H Y, Abd El-Rehim A F. Effect of TiO2 nanoparticles addition on the thermal, microstructural and room-temperature creep behavior of Sn-Zn based solder [J]. J. Electron. Mater., 2018, 47: 6984
doi: 10.1007/s11664-018-6624-8
|
100 |
Choi K, Yu D Y, Ahn S, et al. Joint reliability of various Pb-free solders under harsh vibration conditions for automotive electronics [J]. Microelectron. Reliab., 2018, 86: 66
doi: 10.1016/j.microrel.2018.05.006
|
101 |
Wang Y, Zhao X C, Liu Y, et al. Microstructure, wetting property of Sn-Ag-Cu-Bi-xCe solder and IMC growth at solder/Cu interface during thermal cycling [J]. Rare Met., 2021, 40: 714
doi: 10.1007/s12598-015-0526-1
|
102 |
Wu C M L, Yu D Q, Law C M T, et al. Properties of lead-free solder alloys with rare earth element additions [J]. Mater. Sci. Eng., 2004, R44: 1
|
103 |
Wu J, Xue S B, Wang J W, et al. Effect of Pr addition on properties and Sn whisker growth of Sn-0.3Ag-0.7Cu low-Ag solder for electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 10230
doi: 10.1007/s10854-017-6790-0
|
104 |
Zhang L, Yang F, Zhong S J. Effect of Nd on whiskers growth behavior of SnAgCu solders in electronic packaging [J]. J. Mater. Sci.: Mater. Electron., 2016, 27: 9584
doi: 10.1007/s10854-016-5012-5
|
105 |
Xue P, He P, Long W M, et al. Influence of rare earths, Ga element and their synergistic effects on the microstructure and properties of lead-free solders [J]. Trans. China Weld. Inst., 2021, 42(4): 1
|
|
薛 鹏, 何 鹏, 龙伟民 等. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响 [J]. 焊接学报, 2021, 42(4): 1
|
106 |
Wu J, Xue S B, Wang J W, et al. Coupling effects of rare-earth Pr and Al2O3 nanoparticles on the microstructure and properties of Sn-0.3Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2019, 784: 471
doi: 10.1016/j.jallcom.2019.01.034
|
107 |
Wu J, Xue S B, Huang G Q, et al. In-situ synergistic effect of Pr and Al2O3 nanoparticles on enhancing thermal cycling reliability of Sn-0.3Ag-0.7Cu/Cu solder joint [J]. J. Alloys Compd., 2022, 905: 164152
doi: 10.1016/j.jallcom.2022.164152
|
108 |
Wu J, Xue S B, Wang J W, et al. Effect of in-situ formed Pr-coated Al2O3 nanoparticles on interfacial microstructure and shear behavior of Sn-0.3Ag-0.7Cu-0.06Pr/Cu solder joints during isothermal aging [J]. J. Alloys Compd., 2019, 799: 124
doi: 10.1016/j.jallcom.2019.05.226
|
109 |
El-Daly A A, Eid N A M, Ibrahiem A A. Synergic effect of Te, Ni and MWCNT on creep behavior and microstructural evolution of Sn-1.0Ag-0.7Cu low-Ag solder [J]. J. Alloys Compd., 2022, 902: 163808
doi: 10.1016/j.jallcom.2022.163808
|
110 |
El-Daly A A, Ibrahiem A A, Eid N A M. Development of Sn-1.0Ag-0.7Cu composite solder with improved resistivity and strength-ductility synergy through additions of Ni, Te and MWCNT [J]. J. Mater. Sci.: Mater. Electron., 2021, 32: 19871
doi: 10.1007/s10854-021-06512-2
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|