High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition
SUN Rongrong1, YAO Meiyi1(), WANG Haoyu1, ZHANG Wenhuai1, HU Lijuan1, QIU Yunlong2, LIN Xiaodong1, XIE Yaoping1, YANG Jian3, DONG Jianxin4, CHENG Guoguang5
1Institute of Materials, Shanghai University, Shanghai 200072, China 2Zhongxing Energy Equipment Co., Ltd., Haimen 226126, China 3State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 4School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 5State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition. Acta Metall Sin, 2023, 59(7): 915-925.
An increased temperature causes the breakaway oxidation of zirconium alloys and the loss of structural integrity under the loss of coolant accident (LOCA). Thus, to enhance the inherent safety of nuclear reactors, the idea of developing accident-tolerant fuel (ATF) is proposed. One of the promising candidate materials for ATF cladding is FeCrAl alloy. The theoretical basis and guidance for FeCrAl alloy's composition optimization can be obtained by investigating the effects of alloying elements on the oxidation behavior and mechanism. Thus, the effect of Y on the oxidation behavior of Fe22Cr5Al3Mo alloy in 1000 and 1200oC high-temperature steam was investigated in this study. Two types of Fe22Cr5Al3Mo-xY (x = 0, 0.15, mass fraction, %) alloys, denoted as 0Y and 0.15Y, respectively, were fabricated and oxidized in 1000 and 1200oC high-temperature steam for 2 h, employing a simultaneous thermal analyzer. The microstructure, crystal structure, and composition of the samples before and after oxidation were analyzed using XRD, FIB, EDS, and TEM. The findings indicate that adding 0.15%Y increases the weight gain rate of FeCrAl alloy in 1000oC high-temperature steam, but decreases the weight gain rate of FeCrAl alloy in 1200oC high-temperature steam. Furthermore, adding 0.15%Y can inhibite the formation of ridge morphology on the surface of oxide film and improve the thickness uniformity and interface flatness of oxide film. The oxide films formed on the 0Y and 0.15Y alloys are both α-Al2O3 under the condition of 1000 and 1200oC high-temperature steam for 2 h. In the Al2O3 oxide film, there is hcp-(Cr, Fe)2O3 paralleled to the oxide/metal (O/M) interface. AlYO3, Y2O3, and Fe(Cr, Al)2O4 are present in the Y-rich oxides growing toward the matrix in 0.15Y alloy oxidized in 1200oC steam. The effect of Y on the oxidation behavior of FeCrAl alloy at various temperatures was discussed from the viewpoint of the influence of Y on the microstructure evolution of oxide film.
Fig.2 Oxidation kinetics curves of 0Y and 0.15Y alloys oxidized in 1000 and 1200oC steam for 2 h
Alloy
1000oC
1200oC
0Y
0.05
1.54
0.15Y
0.26
0.59
Table 2 Parabolic rate constants of 0Y and 0.15Y alloys oxidized in 1000 and 1200oC steam for 2 h
Fig.3 SEM images of surface morphologies of oxide films formed on 0Y (a, b) and 0.15Y (c, d) alloys oxidized in 1000oC (a, c) and 1200oC (b, d) steam for 2 h (The elliptic regions in Figs.3c and d stand for the granular oxide and the angular oxide, respectively)
Fig.4 High-angle annular dark field (HAADF) images of the cross-sectional oxide films formed on the 0Y (a, b) and 0.15Y (c, d) alloys oxidized in 1000oC (a, c) and 1200oC (b, d) steam for 2 h (the positions of dotted line in Fig.3) (Region indicated by arrow in Fig.4c stands for pores, the area of D1 in Fig.4d stands for the HAADF image of the cross-sectional angular oxide in Fig.3d)
Fig.5 HAADF images and corresponding EDS mapping of cross-sectional oxide films formed on 0Y (a, b) and 0.15Y (c, d) alloys oxidized in 1000oC (a, c) and 1200oC (b, d) steam for 2 h
Fig.6 EDS line scanning corresponding to line 1 in Fig.5a
Fig.7 TEM images, selected area electron diffraction (SAED) and fast Fourier transformation (FFT) patterns (insets) of different areas in the cross-sectional oxide films formed on 0.15Y alloy oxidized in 1000oC (a, b) and 1200oC (c-e) steam for 2 h (hcp—hexagonal close packed, o—orthorhombic, bcc—body centered cubic, fcc—face centered cubic)
Fig.8 Schematics of oxidation process of FeCrAl alloys in high-temperature steam (a) Fe x O y is preferentially formed on the alloy surface (b) the mixed oxide region of Cr and Al is formed (c) Cr2O3 formed at the interface between Fe x O y and the mixed oxide region of Cr and Al, while the Al2O3 formed at the oxide/metal (O/M) interface (d) at high temperature, Cr2O3 converts to CrO3 and evaporates, and Fe x O y reacts with high-temperature steam to produce volatile hydroxide (e) as the oxidation goes on, the γ-Al2O3 transforms into α-Al2O3 (f) the oxide film of FeCrAl alloy is α-Al2O3 under the condition of high-temperature steam
1
Zinkle S J, Terrani K A, Gehin J C, et al. Accident tolerant fuels for LWRs: A perspective [J]. J. Nucl. Mater., 2014, 448: 374
doi: 10.1016/j.jnucmat.2013.12.005
2
Duan Z G, Yang H L, Satoh Y, et al. Current status of materials development of nuclear fuel cladding tubes for light water reactors [J]. Nucl. Eng. Des., 2017, 316: 131
doi: 10.1016/j.nucengdes.2017.02.031
3
Field K G, Yamamoto Y, Pint B A, et al. Accident tolerant FeCrAl fuel cladding: Current status towards commercialization [A]. Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors [C]. Cham: Springer, 2017
4
Yamamoto Y, Pint B A, Terrani K A, et al. Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors [J]. J. Nucl. Mater., 2015, 467: 703
doi: 10.1016/j.jnucmat.2015.10.019
5
Field K G, Gussev M N, Yamamoto Y, et al. Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications [J]. J. Nucl. Mater., 2014, 454: 352
doi: 10.1016/j.jnucmat.2014.08.013
6
Dryepondt S, Put A R V, Pint B A. Effect of H2O and CO2 on the oxidation behavior and durability at high temperature of ODS-FeCrAl [J]. Oxid. Met., 2013, 79: 627
doi: 10.1007/s11085-013-9382-2
7
Terrani K A, Zinkle S J, Snead L L. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding [J]. J. Nucl. Mater., 2014, 448: 420
doi: 10.1016/j.jnucmat.2013.06.041
8
Rebak R B. Versatile oxide films protect FeCrAl alloys under normal operation and accident conditions in light water power reactors [J]. JOM, 2018, 70: 176
doi: 10.1007/s11837-017-2705-z
9
Rebak R B, Gupta V K, Larsen M. Oxidation characteristics of two FeCrAl alloys in air and steam from 800oC to 1300oC [J]. JOM, 2018, 70: 1484
doi: 10.1007/s11837-018-2979-9
10
Chu R. Studies on high-temperature oxidation and its influence mechanism of Fe-Cr-Al alloy [D]. Shenyang: Shenyang Normal University, 2013
褚 冉. Fe-Cr-Al合金高温氧化及影响机理研究 [D]. 沈阳: 沈阳师范大学, 2013
11
Badini C, Laurella F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism [J]. Surf. Coat. Technol., 2001, 135: 291
doi: 10.1016/S0257-8972(00)00989-0
12
Gupta V K, Larsen M, Rebak R B. Utilizing FeCrAl oxidation resistance properties in water, air and steam for accident tolerant fuel cladding [J]. ECS Trans., 2018, 85: 3
13
Liu F, Götlind H, Svensson J E, et al. TEM investigation of the microstructure of the scale formed on a FeCrAlRE alloy at 900oC: The effect of Y-rich RE particles [J]. Oxid. Met., 2010, 74: 11
doi: 10.1007/s11085-010-9195-5
14
Falaakh D F, Kim S, Bahn C B. Microstructure of aluminium oxide formed on ferritic FeCrAl alloy after high-temperature steam oxidation [J]. Mater. High Temp., 2020, 37: 207
doi: 10.1080/09603409.2020.1742526
15
Pan D, Zhang R Q, Wang H J, et al. In steam short-time oxidation kinetics of FeCrAl alloys [J]. J. Mater. Eng. Perform., 2018, 27: 6407
doi: 10.1007/s11665-018-3665-3
16
Mennicke C, Schumann E, Ruhle M, et al. The effect of yttrium on the growth process and microstructure of α-Al2O3 on FeCrAl [J]. Oxid. Met., 1998, 49: 455
doi: 10.1023/A:1018803113093
17
Cueff R, Buscail H, Caudron E, et al. Oxidation behaviour of Kanthal A1 and Kanthal AF at 1173 K: Effect of yttrium alloying addition [J]. Appl. Surf. Sci., 2003, 207: 246
doi: 10.1016/S0169-4332(02)01506-4
18
Cueff R, Buscail H, Caudron E, et al. Oxidation of alumina formers at 1173 K: Effect of yttrium ion implantation and yttrium alloying addition [J]. Corros. Sci., 2003, 45: 1815
doi: 10.1016/S0010-938X(02)00254-8
19
Issartel C, Buscail H, Chevalier S, et al. Effect of yttrium as alloying element on a model alumina-forming alloy oxidation at 1100oC [J]. Oxid. Met., 2017, 88: 409
doi: 10.1007/s11085-017-9750-4
20
Qian Y, Sun R R, Zhang W H, et al. Effect of Nb on microstructure and corrosion resistance of Fe22Cr5Al3Mo alloy [J]. Acta Metall. Sin., 2020, 56: 321
doi: 10.11900/0412.1961.2019.00276
Zhang W H, Qian Y, Sun R R, et al. Oxidation characteristics of Fe22Cr5Al3Mo-xNb alloys in high temperature steam [J]. Corros. Sci., 2021, 191: 109722
doi: 10.1016/j.corsci.2021.109722
22
Liu F, Götlind H, Svensson J E, et al. Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900oC: A detailed microstructural investigation [J]. Corros. Sci., 2008, 50: 2272
doi: 10.1016/j.corsci.2008.05.019
23
Engkvist J, Canovic S, Liu F, et al. Oxidation of FeCrAl foils at 500-900oC in dry O2 and O2 with 40%H2O [J]. Mater. High Temp., 2014, 26: 199
doi: 10.3184/096034009X464311
24
Engkvist J, Canovic S, Hellström K, et al. Alumina scale formation on a powder metallurgical FeCrAl alloy (Kanthal APMT) at 900-1100oC in dry O2 and in O2 + H2O [J]. Oxid. Met., 2010, 73: 233
doi: 10.1007/s11085-009-9177-7
25
Qiao Y J, Wang P, Qi W, et al. Mechanism of Al on FeCrAl steam oxidation behavior and molecular dynamics simulations [J]. J. Alloys Compd., 2020, 828: 154310
doi: 10.1016/j.jallcom.2020.154310
26
Dai J X, Gong Z M, Xu S T, et al. In situ study on the initial oxidation behavior of zirconium alloys with near-ambient pressure XPS [J]. Acta Phys. Chim. Sin., 2022, 38: 2003026
Ning F Q, Wang X, Yang Y, et al. Uniform corrosion behavior of FeCrAl alloys in borated and lithiated high temperature water [J]. J. Mater. Sci. Technol., 2021, 70: 136
doi: 10.1016/j.jmst.2020.07.026
28
Zhang Z G, Niu Y, Zhang X J. Effect of third element Cr in Fe-Cr-Al alloys [J]. J. Iron Steel Res., 2007, 19(7): 46
Holcomb G R. Superalloys for ultra supercritical steam turbines-oxidation behavior [A]. Superalloys 2008 [C]. Champion, PA: TMS, 2008: 601
30
Tedmon C S. The effect of oxide volatilization on the oxidation kinetics of Cr and Fe-Cr alloys [J]. J. Electrochem. Soc., 1966, 113: 766
doi: 10.1149/1.2424115
31
Messaoudi K, Huntz A M, Lesage B. Diffusion and growth mechanism of Al2O3 scales on ferritic Fe-Cr-Al alloys [J]. Mater. Sci. Eng., 1998, A247: 248
32
Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
33
Nicholls J R, Bennett M J, Newton R. A life prediction model for the chemical failure of FeCrAlRE alloys: Preliminary assessment of model extension to lower temperatures [J]. Mater. High Temp., 2003, 20: 429
doi: 10.1179/mht.2003.050
34
Shi J G, Su H X, Zhang X J, et al. Research progress in the influence of rare earth elements on properties of alumina [J]. Sino-Glob. Energy, 2020, 25(5): 68
Pint B A, Jain A, Hobbs L W. The effect of ion-implanted elements on the θ to α phase transformation of Al2O3 scales grown on β-NiAl [J]. MRS Online Proc. Library, 1992, 288: 1013
doi: 10.1557/PROC-288-1013
36
Pint B A, Martin J R, Hobbs L W. 18O/SIMS characterization of the growth mechanism of doped and undoped α-Al2O3 [J]. Oxid. Met., 1993, 39: 167
doi: 10.1007/BF00665610
37
Naumenko D, Kochubey V, Niewolak L, et al. Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements [J]. J. Mater. Sci., 2008, 43: 4550
doi: 10.1007/s10853-008-2639-5
38
Lagerlof K P D, Pletka B J, Mitchell T E, et al. Deformation and diffusion in sapphire (α-Al2O3) [J]. Radiation Effects, 1983, 74: 87
doi: 10.1080/00337578308218402
39
Jedlinski J, Borchardt G. On the oxidation mechanism of alumina formers [J]. Oxid. Met., 1991, 36: 317
doi: 10.1007/BF00662968
40
Tolpygo V K, Grabke H J. Microstructural characterization and adherence of α-Al2O3 oxide scales on Fe-Cr-Al and Fe-Cr-Al-Y alloys [J]. Oxid. Met., 1994, 41: 343
doi: 10.1007/BF01113370
41
Li B, Yan Y X, Meng G E, et al. Effect of yttrium on microstructure and high temperature embrittlement of Fe-20Cr-4Al alloy [J]. J. Chin. Soc. Rare Earths, 1992, 10: 52
Saenko I, Fabrichnaya O, Udovsky A. New thermodynamic assessment of the Fe-Y system [J]. J. Phase Equilib. Diffus., 2017, 38: 684
doi: 10.1007/s11669-017-0574-3
43
Wu S J, Li J, Liu S. Effect of Hf on microstructure and property of ODS-FeCrAl alloy [J]. Atom. Energy Sci. Technol., 2020, 54: 648
Dou P, Kimura A, Okuda T, et al. Polymorphic and coherency transition of Y-Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel [J]. Acta Mater., 2011, 59: 992
doi: 10.1016/j.actamat.2010.10.026
45
Li X D, Li J G, Xiu Z M, et al. Transparent Nd: YAG ceramics fabricated using nanosized γ-alumina and yttria powders [J]. J. Am. Ceram. Soc., 2009, 92: 241
doi: 10.1111/jace.2009.92.issue-1