|
|
Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys |
WANG Lei1( ), LIU Mengya1, LIU Yang1( ), SONG Xiu1, MENG Fanqiang2 |
1Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China 2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China |
|
Cite this article:
WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys. Acta Metall Sin, 2023, 59(9): 1173-1189.
|
Abstract There has been rapid development in the turbine power systems of aeroengines and gas turbines. Consequently, the application of surface impact strengthening technology for the surface strengthening of superalloys used in turbine rotors and its corresponding mechanisms have attracted wide attention. However, it is difficult to prevent the recovery and recrystallization of the surface hardened layer of superalloys serviced at high temperatures. This leads to the degradation of both the surface strengthening/toughening and fatigue resistance. This is the main hurdle restricting the wide application of surface impact strengthening technology for key components of advanced superalloys. In this paper, the progress made in surface impact strengthening mechanisms and the applications of nickel-based superalloys in recent years are summarized. The effect of surface impact strengthening on the surface strength, toughness, and fatigue resistance of nickel-based superalloys is analyzed. The evolution of the microstructure of the hardened surface of the alloys during long-term aging at high temperatures, and its effect on high-temperature stability are explored. The paper aims to provide essential and important information for developing surface impact strengthening mechanisms of nickel-based superalloys and improving the fatigue resistance of turbine rotors of aeroengines and gas turbines.
|
Received: 29 March 2023
|
|
Fund: National Key Research and Development Program of China(2022YFB3705102);National Key Research and Development Program of China(2022YFB3705101);National Science and Technology Major Project of China(J2019-VI-0020-0136);National Natural Science Foundation of China(U1708253);National Natural Science Foundation of China(51571052) |
1 |
Ren X P, Liu Z Q. Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy [J]. Int. J. Miner., Metall. Mater., 2018, 25: 937
doi: 10.1007/s12613-018-1643-2
|
2 |
Stinville J C, Callahan P G, Charpagne M A, et al. Direct measurements of slip irreversibility in a nickel-based superalloy using high resolution digital image correlation [J]. Acta Mater., 2020, 186: 172
doi: 10.1016/j.actamat.2019.12.009
|
3 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
|
4 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of pre hot corrosion on high cycle fatigue behavior of the superalloy IN718 at 600oC [J]. Int. J. Fatigue, 2018, 114: 120
doi: 10.1016/j.ijfatigue.2018.05.021
|
5 |
Telesman J, Gabb T P, Kantzos P T, et al. Effect of broaching machining parameters, residual stresses and cold work on fatigue life of Ni-based turbine disk P/M alloy at 650oC [J]. Int. J. Fatigue, 2021, 150: 106328
doi: 10.1016/j.ijfatigue.2021.106328
|
6 |
Zangeneh S, Lashgari H R, Asnavandi M. The effect of long-term service exposure on the stability of carbides in Co-Cr-Ni-W (X-45) superalloy [J]. Eng. Failure Anal., 2018, 84: 276
doi: 10.1016/j.engfailanal.2017.11.018
|
7 |
Zhang P Y, Zhou X, Wang X D, et al. Study on the microstructural degradation and rejuvenation heat treatment of directionally solidified turbine blades [J]. J. Alloys Compd., 2020, 829: 154474
doi: 10.1016/j.jallcom.2020.154474
|
8 |
Vikram R J, Singh A, Suwas S, et al. Effect of heat treatment on the modification of microstructure of selective laser melted (SLM) IN718 and its consequences on mechanical behavior [J]. J. Mater. Res., 2020, 35: 1949
doi: 10.1557/jmr.2020.129
|
9 |
Deng H Z, Wang L, Liu Y, et al. The evolution law of δ phase of IN718 superalloy in temperature/stress coupled field [J]. Mater. Charact., 2022, 184: 111684
doi: 10.1016/j.matchar.2021.111684
|
10 |
An J L, Wang L, Liu Y, et al. The role of δ phase for fatigue crack propagation behavior in a Ni base superalloy at room temperature [J]. Mater. Sci. Eng., 2017, A684: 312
|
11 |
Tomevenya K M, Liu S J. Probabilistic fatigue-creep life reliability assessment of aircraft turbine disk [J]. J. Mech. Sci. Technol., 2018, 32: 5127
doi: 10.1007/s12206-018-1010-2
|
12 |
Maleki E, Unal O, Guagliano M, et al. The effects of shot peening, laser shock peening and ultrasonic nanocrystal surface modification on the fatigue strength of Inconel 718 [J]. Mater. Sci. Eng., 2021, A810: 141029
|
13 |
Qin Z, Li B, Chen R, et al. Effect of shot peening on high cycle and very high cycle fatigue properties of Ni-based superalloys [J]. Int. J. Fatigue, 2023, 168: 107429
doi: 10.1016/j.ijfatigue.2022.107429
|
14 |
Yang J, Liu D X, Fan K F, et al. Designing a gradient structure in a Ni-based superalloy to improve fretting fatigue resistance at elevated temperatures through an ultrasonic surface rolling process [J]. Int. J. Fatigue, 2023, 168: 107397
doi: 10.1016/j.ijfatigue.2022.107397
|
15 |
Wu J J, Huang Z, Qiao H C, et al. Prediction about residual stress and microhardness of material subjected to multiple overlap laser shock processing using artificial neural network [J]. J. Cent. South Univ., 2022, 29: 3346
doi: 10.1007/s11771-022-5158-7
|
16 |
Gu H Q, Yan P, Jiao L, et al. Effect of laser shock peening on boring hole surface integrity and conformal contact fretting fatigue life of Ti-6Al-4V alloy [J]. Int. J. Fatigue, 2023, 166: 107241
doi: 10.1016/j.ijfatigue.2022.107241
|
17 |
Zhang H P, Cai Z Y, Chi J X, et al. Microstructural evolution, mechanical behaviors and strengthening mechanism of 300 M steel subjected to multi-pass laser shock peening [J]. Opt. Lasers Technol., 2022, 148: 107726
doi: 10.1016/j.optlastec.2021.107726
|
18 |
Wang C Y, Luo Y K, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plast., 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
|
19 |
Liu Y, Wang L, Yang K Y, et al. Effects of thermally assisted warm laser shock processing on the microstructure and fatigue property of IN718 superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1645
doi: 10.1007/s40195-021-01340-z
|
20 |
Lin C H, Wu H B, Li Z G, et al. Evaluation of oblique laser shock peening effect of FGH95 superalloy turbine disk material [J]. Mater. Today Commun., 2022, 31: 103534
|
21 |
Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750oC [J]. Corros. Sci., 2021, 185: 109419
doi: 10.1016/j.corsci.2021.109419
|
22 |
Qiao Y, Guo P Q, Chen H T, et al. Roughness prediction model of face milling surface for nickel-based superalloy FGH97 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 562: 012154
|
23 |
Jiang R, Song Y D, Reed P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys—A review [J]. Int. J. Fatigue, 2020, 141: 105887
doi: 10.1016/j.ijfatigue.2020.105887
|
24 |
Xu C, Yao Z H, Dong J X, et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy [J]. Rare Met., 2019, 38: 642
doi: 10.1007/s12598-018-1123-x
|
25 |
Zhang X S, Ma Y E, Yang M, et al. A comprehensive review of fatigue behavior of laser shock peened metallic materials [J]. Theor. Appl. Mech., 2022, 122: 103642
|
26 |
Child D J, West J D, Thomson R C. Assessment of surface hardening effects from shot peening on a Ni-based alloy using electron backscatter diffraction techniques [J]. Acta Mater., 2011, 59: 4825
doi: 10.1016/j.actamat.2011.04.025
|
27 |
Zhong L Q, Liang Y L, Hu H. Study on plastic deformation characteristics of shot peening of Ni-based superalloy GH4079 [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 230: 012041
|
28 |
Zhong L Q, Liang Y L, Yan Z, et al. Effect of shot peening on high cycle fatigue limit of FGH4097 P/M superalloys at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2198
|
|
钟丽琼, 梁益龙, 严 振 等. 喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响 [J]. 稀有金属材料与工程, 2018, 47: 2198
|
29 |
Kumar D, Idapalapati S, Wang W, et al. Microstructure-mechanical property correlation in shot peened and vibro-peened Ni-based superalloy [J]. J. Mater. Process. Technol., 2019, 267: 215
doi: 10.1016/j.jmatprotec.2018.12.007
|
30 |
Wang X, Xu C L, Wang X F, et al. Turning/shot peening of nickel-based powder metallurgy superalloy: Effect on surface integrity and high-temperature low-cycle fatigue properties [J]. Int. J. Fatigue, 2023, 166: 107291
doi: 10.1016/j.ijfatigue.2022.107291
|
31 |
Gao Y K, Zhong Z, Lei L M. Influence of laser peening and shot peening on fatigue properties of FGH97 superalloy [J]. Rare Met. Mater. Eng., 2016, 45: 1230
|
|
高玉魁, 仲 政, 雷力明. 激光冲击强化和喷丸强化对FGH97高温合金疲劳性能的影响 [J]. 稀有金属材料与工程, 2016, 45: 1230
|
32 |
Luo X K, Zhang W C, Wu B, et al. Effect of combination of laser shock peening and shot peening on surface integrity and fatigue property of K4169 casting alloy [J]. Aeron. Manuf. Technol., 2022, 65(11): 57
|
|
罗学昆, 张文灿, 吴 波 等. 激光冲击/喷丸复合强化对K4169铸造合金的表面完整性和疲劳性能的影响 [J]. 航空制造技术, 2022, 65(11): 57
|
33 |
Zhao X H, Zhou H Y, Liu Y. Effect of shot peening on the fatigue properties of nickel-based superalloy GH4169 at high temperature [J]. Results Phys., 2018, 11: 452
doi: 10.1016/j.rinp.2018.09.047
|
34 |
Klotz T, Delbergue D, Bocher P, et al. Surface characteristics and fatigue behavior of shot peened Inconel 718 [J]. Int. J. Fatigue, 2018, 110: 10
doi: 10.1016/j.ijfatigue.2018.01.005
|
35 |
Dong C L, Yang S K, Peng Z C. Effect of shot peening on notched fatigue performance of powder metallurgy Udimet 720Li superalloy [J]. Intermetallics, 2021, 135: 107226
doi: 10.1016/j.intermet.2021.107226
|
36 |
Shen X J, Wang C, Sun D, et al. Comparison research on mechanical properties of high temperature alloy after laser peened and ultrasonically peened [J]. Appl. Mech. Mater., 2014, 670-671: 46
doi: 10.4028/www.scientific.net/AMM.670-671
|
37 |
Chen Y X, Wang J C, Gao Y K, et al. Effect of shot peening on fatigue performance of Ti2AlNb intermetallic alloy [J]. Int. J. Fatigue, 2019, 127: 53
doi: 10.1016/j.ijfatigue.2019.05.034
|
38 |
Luo J, Bowen P. Effects of temperature and shot peening on S-N behavior of a PM Ni-base superalloy UDIMET 720 [J]. Metall. Mater. Trans., 2004, 35A: 1007
|
39 |
Wu D X, Yao C F, Zhang D H. Surface characterization and fatigue evaluation in GH4169 superalloy: comparing results after finish turning; shot peening and surface polishing treatments [J]. Int. J. Fatigue, 2018, 113: 222
doi: 10.1016/j.ijfatigue.2018.04.009
|
40 |
Sun Z Y, Ye Y D, Xu J B, et al. Effect of electropulsing on surface mechanical behavior and microstructural evolution of Inconel 718 during ultrasonic surface rolling process [J]. J. Mater. Eng. Perform., 2019, 28: 6789
doi: 10.1007/s11665-019-04443-y
|
41 |
Jiang H, Li L H, Dong J X, et al. Microstructure-based hot extrusion process control principles for nickel-base superalloy pipes [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 391
doi: 10.1016/j.pnsc.2018.04.009
|
42 |
Wang X, Hu R G, Hu B, et al. Effect of hole-expansion on high-temperature fatigue property of GH4169 superalloy hole structure [J]. J. Aerosp. Power, 2017, 32: 89
|
|
王 欣, 胡仁高, 胡 博 等. 孔挤压对于高温合金GH4169孔结构高温疲劳性能的影响 [J]. 航空动力学报, 2017, 32: 89
|
43 |
Luo X K, Wang X, Hu R G, et al. Effects of hole cold expansion on fatigue property of Inconel 718 superalloy [J]. China Surf. Eng., 2016, 29(3): 116
|
|
罗学昆, 王 欣, 胡仁高 等. 孔挤压强化对Inconel 718高温合金疲劳性能的影响 [J]. 中国表面工程, 2016, 29(3): 116
|
44 |
Yang J, Liu D X, Zhang X H, et al. The effect of ultrasonic surface rolling process on the fretting fatigue property of GH4169 superalloy [J]. Int. J. Fatigue, 2020, 133: 105373
doi: 10.1016/j.ijfatigue.2019.105373
|
45 |
Yin M G, Cai Z B, Zhang Z X, et al. Effect of ultrasonic surface rolling process on impact-sliding wear behavior of the 690 alloy [J]. Tribol. Int., 2020, 147: 105600
doi: 10.1016/j.triboint.2019.02.008
|
46 |
Sun Z Y, Zhang Y F, Zhao X J, et al. Effect of electropulsing on the surface mechanical behavior of GH4169 during ultrasonic surface rolling process [J]. Ordnance Mater. Sci. Eng., 2021, 44(3): 33
|
|
孙智妍, 张雲飞, 赵秀娟 等. 电脉冲对GH4169超声滚压表面性能的影响 [J]. 兵器材料科学与工程, 2021, 44(3): 33
|
47 |
Ermakova A, Braithwaite J, Razavi J, et al. The influence of laser shock peening on corrosion-fatigue behaviour of wire arc additively manufactured components [J]. Surf. Coat. Technol., 2023, 456: 129262
doi: 10.1016/j.surfcoat.2023.129262
|
48 |
Tan Q, Yan Z R, Huang H, et al. Surface integrity and oxidation of a powder metallurgy Ni-based superalloy treated by laser shock peening [J]. JOM, 2020, 72: 1803
doi: 10.1007/s11837-020-04054-2
|
49 |
Rozmus-Górnikowska M, Kusiński J, Cieniek Ł. Effect of laser shock peening on the microstructure and properties of the inconel 625 surface layer [J]. J. Mater. Eng. Perform., 2020, 29: 1544
doi: 10.1007/s11665-020-04667-3
|
50 |
Cao J D, Zhang J S, Hua Y Q, et al. Low-cycle fatigue behavior of Ni-based superalloy GH586 with laser shock processing [J]. J. Wuhan Univ. Technol.—Mater. Sci. Ed., 2017, 32: 1186
|
51 |
Luo S H, Nie X F, Zhou L C, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy [J]. Surf. Coat. Technol., 2017, 311: 337
doi: 10.1016/j.surfcoat.2017.01.031
|
52 |
Liu Y, Wang L, Yang K Y, et al. Characteristics of microstructure evolution of surface treated IN718 superalloy by warm laser shock peening during long-term aging at high temperatures [J]. Mater. Charact., 2022, 193: 112261
doi: 10.1016/j.matchar.2022.112261
|
53 |
Pan X L, Guo S Q, Tian Z, et al. Fatigue performance improvement of laser shock peened hole on powder metallurgy Ni-based superalloy labyrinth disc [J]. Surf. Coat. Technol., 2021, 409: 126829
doi: 10.1016/j.surfcoat.2021.126829
|
54 |
Mythreyi O V, Nagesha B K, Jayaganthan R. Microstructural evolution & corrosion behavior of laser-powder-bed-fused Inconel 718 subjected to surface and heat treatments [J]. J. Mater. Res. Technol., 2022, 19: 3201
doi: 10.1016/j.jmrt.2022.05.123
|
55 |
Orozco-Caballero A, Jackson T, da Fonseca J Q. High-resolution digital image correlation study of the strain localization during loading of a shot-peened RR1000 nickel-based superalloy [J]. Acta Mater., 2021, 220: 117306
doi: 10.1016/j.actamat.2021.117306
|
56 |
Morançais A, Fèvre M, François M, et al. Residual stress determination in a shot-peened nickel-based single-crystal superalloy using X-ray diffraction [J]. J. Appl. Crystallogr., 2015, 48: 1761
doi: 10.1107/S1600576715017689
|
57 |
Goulmy J P, Kanoute P, Rouhaud E, et al. A calibration procedure for the assessment of work hardening Part II: Application to shot peened IN718 parts [J]. Mater. Charact., 2021, 175: 111068
doi: 10.1016/j.matchar.2021.111068
|
58 |
Salvati E, Lunt A J G, Heason C P, et al. An analysis of fatigue failure mechanisms in an additively manufactured and shot peened IN 718 nickel superalloy [J]. Mater. Des., 2020, 191: 108605
doi: 10.1016/j.matdes.2020.108605
|
59 |
Gibson G J, Perkins K M, Gray S, et al. Influence of shot peening on high-temperature corrosion and corrosion-fatigue of nickel based superalloy 720Li [J]. Mater. High Temp., 2016, 33: 225
doi: 10.1080/09603409.2016.1161945
|
60 |
Song D Y, Luo Z P, Yang Y R, et al. Microstructure of the hole expansion strengthened layer of high temperature alloy GH169 [J]. Acta Aeronaut. Astronaut. Sin., 1996, 17(1): 123
|
|
宋德玉, 罗治平, 杨玉荣 等. GH169高温合金孔挤压强化层的微观结构 [J]. 航空学报, 1996, 17(1): 123
|
61 |
Messé O M D M, Stekovic S, Hardy M C, et al. Characterization of plastic deformation induced by shot-peening in a Ni-base superalloy [J]. JOM, 2014, 66: 2502
doi: 10.1007/s11837-014-1184-8
|
62 |
Wang D L, Li J B, Jin T, et al. Fatigue-life improvement of K417 alloy by shot peening and recrystallization [J]. Rare Met. Mater. Eng., 2006, 35: 1294
|
|
王东林, 李家宝, 金 涛 等. 利用喷丸再结晶方法提高K417合金的疲劳寿命 [J]. 稀有金属材料与工程, 2006, 35: 1294
|
63 |
Ren X D. Laser Impact Peening of High Temperature Service Materials [M]. Beijing: Science Press, 2014: 11
|
|
任旭东. 高温服役材料激光冲击强化技术 [M]. 北京: 科学出版社, 2014: 11
|
64 |
Yu Y Q, Gong J N, Fang X Y, et al. Comparison of surface integrity of GH4169 superalloy after high-energy, low-energy, and femtosecond laser shock peening [J]. Vacuum, 2023, 208: 111740
doi: 10.1016/j.vacuum.2022.111740
|
65 |
Geng Y X, Dong X, Wang K D, et al. Evolutions of microstructure, phase, microhardness, and residual stress of multiple laser shock peened Ni-based single crystal superalloy after short-term thermal exposure [J]. Opt. Lasers Technol., 2020, 123: 105917
doi: 10.1016/j.optlastec.2019.105917
|
66 |
Wang Y F, Zhu Y T, Wu X L, et al. Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure [J]. Sci. China Mater., 2021, 64: 3114
doi: 10.1007/s40843-021-1702-2
|
67 |
Gao B, Lai Q Q, Cao Y, et al. Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling [J]. Sci. Adv., 2020, 6: eaba8169
doi: 10.1126/sciadv.aba8169
|
68 |
Sun G S, Liu J Z, Zhu Y T. Heterostructure alleviates Lüders deformation of ultrafine-grained stainless steels [J]. Mater. Sci. Eng., 2022, A848: 143393
|
69 |
Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
|
70 |
Ding R, Yang Z G, van der Zwaag S, et al. How chemical boundary engineering can produce cheap, ultra-strong steels [J]. Proc. Inst. Civil Eng.—Civil Eng., 2020, 173: 102
|
71 |
Altinkurt G, Fèvre M, Geandier G, et al. Local strain redistribution in a coarse-grained nickel-based superalloy subjected to shot-peening, fatigue or thermal exposure investigated using synchrotron X-ray Laue microdiffraction [J]. J. Mater. Sci., 2018, 53: 8567
doi: 10.1007/s10853-018-2144-4
|
72 |
Salvati E, Lunt A J G, Ying S, et al. Eigenstrain reconstruction of residual strains in an additively manufactured and shot peened nickel superalloy compressor blade [J]. Comput. Methods Appl. Mech. Eng., 2017, 320: 335
doi: 10.1016/j.cma.2017.03.005
|
73 |
Buchanan D J, John R. Residual stress redistribution in shot peened samples subject to mechanical loading [J]. Mater. Sci. Eng., 2014, A615: 70
|
74 |
Zhu L H, Fan X L, Xiao L, et al. Influence of shot peening on the microstructure and high-temperature tensile properties of a powder metallurgy Ni-based superalloy [J]. J. Mater. Sci., 2023, 58: 2838
doi: 10.1007/s10853-023-08182-3
|
75 |
Yang J, Liu D X, Ren Z C, et al. Grain growth and fatigue behaviors of GH4169 superalloy subjected to excessive ultrasonic surface rolling process [J]. Mater. Sci. Eng., 2022, A839: 142875
|
76 |
Lesyk D A, Dzhemelinskyi V V, Martinez S, et al. Surface shot peening post-processing of Inconel 718 alloy parts printed by laser powder bed fusion additive manufacturing [J]. J. Mater. Eng. Perform., 2021, 30: 6982
doi: 10.1007/s11665-021-06103-6
|
77 |
Li L, Liu D J. Complete dissolution of gamma prime via severe plastic deformation in a precipitation-hardened nickel-base superalloy [J]. Mater. Lett., 2021, 284: 128607
doi: 10.1016/j.matlet.2020.128607
|
78 |
Colliander M H, Sundell G, Thuvander M. Complete precipitate dissolution during adiabatic shear localisation in a Ni-based superalloy [J]. Philos. Mag. Lett., 2020, 100: 561
doi: 10.1080/09500839.2020.1820595
|
79 |
Liao Z R, Polyakov M, Diaz O G, et al. Grain refinement mechanism of nickel-based superalloy by severe plastic deformation—Mechanical machining case [J]. Acta Mater., 2019, 180: 2
doi: 10.1016/j.actamat.2019.08.059
|
80 |
Takizawa Y, Sumikawa K, Watanabe K, et al. Incremental feeding high-pressure sliding for grain refinement of large-scale sheets: Application to Inconel 718 [J]. Metall. Mater. Trans., 2018, 49A: 1830
|
81 |
Liu Y, Wang L, Yang K Y, et al. Mechanism for superior fatigue performance of warm laser shock peened IN718 superalloy after high-temperature ageing [J]. J. Alloys Compd., 2022, 923: 166340
doi: 10.1016/j.jallcom.2022.166340
|
82 |
Buchanan D J, Shepard M J, John R. Retained residual stress profiles in a laser shock‐peened and shot‐peened nickel base superalloy subject to thermal exposure [J]. Int. J. Struct. Integr., 2011, 2: 34
doi: 10.1108/17579861111108590
|
83 |
Lu Y, Yang Y L, Zhao J B, et al. Impact on mechanical properties and microstructural response of nickel-based superalloy GH4169 subjected to warm laser shock peening [J]. Materials, 2020, 13: 5172
doi: 10.3390/ma13225172
|
84 |
Lu G X, Jin T, Zhou Y Z, et al. Research progress of applications of laser shock processing on superalloys [J]. Chin. J. Nonferrous Met., 2018, 28: 1755
doi: 10.1016/S1003-6326(18)64819-8
|
|
卢国鑫, 金 涛, 周亦胄 等. 激光冲击强化在高温合金材料应用上的研究进展 [J]. 中国有色金属学报, 2018, 28: 1755
|
85 |
Chin K S, Idapalapati S, Ardi D T. Thermal stress relaxation in shot peened and laser peened nickel-based superalloy [J]. J. Mater. Sci. Technol., 2020, 59: 100
doi: 10.1016/j.jmst.2020.03.059
|
86 |
Zhou Z, Gill A S, Telang A, et al. Experimental and finite element simulation study of thermal relaxation of residual stresses in laser shock peened IN718 SPF superalloy [J]. Exp. Mech., 2014, 54: 1597
doi: 10.1007/s11340-014-9940-9
|
87 |
Gill A, Telang A, Mannava S R, et al. Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy [J]. Mater. Sci. Eng., 2013, A576: 346
|
88 |
Gill A S, ZhouZ., Lienert U, et al. High spatial resolution, high energy synchrotron X-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy [J]. J. Appl. Phys., 2012, 111: 084904
|
89 |
Wang H M, Sun X J, Li X X. Laser shock processing of an austenitic stainless steel and a nickel-base superalloy [J]. J. Mater. Sci. Technol., 2003, 19: 402
|
90 |
Zhu H Y, Qu X M, Cao J, et al. Study on stress relaxation characteristics of FGH95 powder superalloy treated by laser shock peening [J]. Mater. Res. Express, 2022, 9: 106502
doi: 10.1088/2053-1591/ac95f9
|
91 |
Zhou G N, Zhang Y B, Pantleon W, et al. Quantification of room temperature strengthening of laser shock peened Ni-based superalloy using synchrotron microdiffraction [J]. Mater. Des., 2022, 221: 110948
doi: 10.1016/j.matdes.2022.110948
|
92 |
Lu Y, Zhao J B, Qiao H C, et al. A study on the surface morphology evolution of the GH4619 using warm laser shock peening [J]. AIP Adv., 2019, 9: 085030
|
93 |
Xiang S, Liu X T, Xu R, et al. Ultrahigh strength in lightweight steel via avalanche multiplication of intermetallic phases and dislocation [J]. Acta Mater., 2023, 242: 118436
doi: 10.1016/j.actamat.2022.118436
|
94 |
Lin C H, Tang Y, Yu L W, et al. Oblique laser shock peening effect of the FGH95 superalloy with a PCA and comprehensive index [J]. Appl. Opt., 2022, 61: 2690
doi: 10.1364/AO.450877
pmid: 35471349
|
95 |
Gill A S, Telang A, Ye C, et al. Localized plastic deformation and hardening in laser shock peened Inconel alloy 718SPF [J]. Mater. Charact., 2018, 142: 15
doi: 10.1016/j.matchar.2018.05.010
|
96 |
Luo S H, He W F, Zhou L C, et al. Aluminizing mechanism on a nickel-based alloy with surface nanostructure produced by laser shock peening and its effect on fatigue strength [J]. Surf. Coat. Technol., 2018, 342: 29
doi: 10.1016/j.surfcoat.2018.02.083
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|