Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (12): 1274-1280     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF MOLYBDENUM ON DELAYED FRACTURE BEHAVIOR OF HIGH STRENGTH STEEL
HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; ZHANG Xiaozhong
Institute of Structural Materials; Central Iron & Steel Research Institute; Beijing 100081
Cite this article: 

HUI Weijun; DONG Han; WENG Yuqing; SHI Jie; ZHANG Xiaozhong. EFFECT OF MOLYBDENUM ON DELAYED FRACTURE BEHAVIOR OF HIGH STRENGTH STEEL. Acta Metall Sin, 2004, 40(12): 1274-1280 .

Download:  PDF(425KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Four heats of V and Nb microalloyed 40Cr steel containing 0 to 1.54% Mo were used to study the effect of Mo on delayed fracture resistance. The results of both notched tensile sustained load test and stress corrosion cracking test show that the delayed fracture resistance increases with increasing Mo content. Maximum delayed fracture resistance is obtained at a Mo concentration of about 1.15%. The result of EDS (energy dispersive spectroscopy) analysis shows that Mo tends to segregate in the grain boundary in a scale of no more than a few nanometers. EELS (electron energy loss spectra) measurement indicates that the segregation of Mo in grain boundary tends to increase the strength of grain boundary. The pronounced effect of Mo in raising the tempering resistance and the ability to strengthen prior austenite grain boundary are the main reasons for the beneficial effect of Mo on delayed fracture resistance. Hydrogen trapping effect caused by fine Mo2C precipitation could also improve the delayed fracture resistance. It is also confirmed that the tested steels could have a much higher delayed fracture resistance when the secondary hardening carbides of V and Mo are in the condition of slight over-raging.
Key words:  molybdenum      high strength steel      delayed fracture      
Received:  28 December 2003     
ZTFLH:  TG111.91  
  TG142  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I12/1274

[1] Archer R S, Briggs J Z, Loeb C M Jr. MolybdenumSteels, Iron and Alloys. New York: Climax Molybdenum Co., 1970:1
[2] Honeycombe S R, Bhadeshia H K D H. SteelsMicro structure and Properties. 2nd ed., London: Edward Arnold, 1995: 182
[3] Dumoulin P, Guttmann M, Foucault M, Palmier M, Wayman M, Biscondi M. Met Sci, 1980: 14(1):1
[4] Grobner P J, Sponseller D L, Diesburg. Corrosion, 1979: 35(6): 240
[5] Craig B D, Krauss G. Metall Trans, 1980: 11A:1799
[6] Craig B D. Metall Trans, 1982: 13A: 1099
[7] Charbonnier J C, Margot-Marette H, Brass A M, Aucouturier M. Metall Trans, 1985:16A: 935
[8] Asahi H, Sogo Y, Ueno M, Higashiyama H. Metall Trans, 1988: 19A: 2171
[9] Xiang C Y. Alloyed Structural Steels. Beijing: Metallurgical Industry Press, 1999: 132, 335 (项程云.合金结构钢.北京:冶金工业出版社,1999:132, 335)
[10] Hui W J, Dong H, Weng Y Q. Iron Steel, 2001: 36(3): 69 (惠卫军,董瀚,翁字庆.钢铁,2001:36(3):69)
[11] Chu W Y. Hydrogen Damage and Delayed Failure. Beijing: Metallurgical Industry Press, 1988: 472 (褚武扬.氢损伤和滞后断裂.北京:冶金工业出版社,1988: 472)
[12] Weng Y Q, et al. Ultrafine Grained Steels-The Theory of Microstructure Refinement and Controlling Technology for Steels. Beijing: Metallurgical Industry Press, 2003: 967 (翁宇庆等.超细晶钢--钢的组织细化理论与控制技术.北 京:冶金工业出版社,2003:967)
[13] Hui W J. PhD Thesis, Central Iron & Steel Research Institute, Beijing, 2003 (惠卫军.钢铁研究总院博士学位论文,北京,2003)
[14] Li G F, Wu R G, Lei T C. Metall Trans, 1992: 23A: 2879
[15] Hui W J, Dong H, Weng Y Q. J Iron Steel Res Int, 2003:10(4): 75
[16] Llewellyn D T. Ironmaking Steelmaking, 1996: 23: 397
[17] Gojic M, Kosec L. ISIJ Int, 1997: 37: 412
[18] Zhong P, Gu B Z, Jin J J, Wang H T. J Aeronaut Mater,1995: 15(4): 41 (钟平,古宝珠,金建军,王洪涛,航空材料学报,1995:15(4): 41)
[19] Muller D A, Batson P E, Subramanian S, Sass S L, Silcox J. J Phys Rev Lett, 1995: 75: 4744
[1] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[6] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[7] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[8] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[9] Mingyue WEN, Wenchao DONG, Huiyong PANG, Shanping LU. Microstructure and Impact Toughness of Welding Heat-Affected Zones of a Fe-Cr-Ni-Mo High Strength Steel[J]. 金属学报, 2018, 54(4): 501-511.
[10] Qingdong ZHANG,Xiao LIN,Qiang CAO,Xingfu LU,Boyang ZHANG,Shushan HU. Flatness Defect Evolution of Cold-Rolled High Strength Steel Strip During Quenching Process[J]. 金属学报, 2017, 53(4): 385-396.
[11] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[12] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[13] Lin FAN,Kangkang DING,Weimin GUO,Penghui ZHANG,Likun XU. EFFECT OF HYDROSTATIC PRESSURE AND PRE-STRESS ON CORROSION BEHAVIOR OF A NEW TYPE Ni-Cr-Mo-V HIGH STRENGTH STEEL[J]. 金属学报, 2016, 52(6): 679-688.
[14] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[15] YANG Fuqiang, SONG Renbo, SUN Ting, ZHANG Leifeng, ZHAO Chao, LIAO Baoxin. MICROSTRUCTURE AND MECHANICAL PROPER- TIES OF Fe-Mn-Al LIGHT-WEIGHT HIGH STRENGTH STEEL[J]. 金属学报, 2014, 50(8): 897-904.
No Suggested Reading articles found!