Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (8): 1087-1096    DOI: 10.11900/0412.1961.2022.00290
Research paper Current Issue | Archive | Adv Search |
Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion
LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng(), REN Yuping, QIN Gaowu
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion. Acta Metall Sin, 2023, 59(8): 1087-1096.

Download:  HTML  PDF(4686KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This study utilizes the Pandat software to design a novel ternary alloy, Mg-0.2Ce-0.2Ca (mass fraction, %). The Mg alloy samples are extruded conventionally and provide high strength and low alloying with yield strength of approximately 364 MPa and total content of only approximately 0.4%. The microstructures at different stages of extrusion are characterized, revealing the existence of twin in the Mg-0.2Ce-0.2Ca alloy throughout the extrusion process, indicating high twin migration resistance. In the middle and later stages of extrusion, dynamically recrystallized grains nucleate at regions of intersected twinning variants, leading to a significant reduction in the proportion of twinning interfaces. Moreover, during the early stage of extrusion, a large number of <c + a> dislocations are stored in the Mg-0.2Ce-0.2Ca alloy, and the dislocation-dominated recovery/recrystallization mechanism is functional until the late stage of extrusion due to the high slipping resistance of dislocations. This mechanism directly contributes to the formation of ultrafine grains in present Mg alloy. The results show that the addition of Ca increases the resistance of twinning motion in the Mg matrix, while the addition of Ce and Ca induces multisystem slip, which are the main mechanisms for regulating the microstructure evolution of Mg-Ce-Ca alloy during extrusion. These findings have significant implications for the development of new high-strength, low-alloyed Mg alloys.

Key words:  wrought Mg alloy      mechanical property      microstructure evolution      deformation behavior      DRX mechanism     
Received:  10 June 2022     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2021YFB3701000);National Natural Science Foundation of China(U2167213);National Natural Science Foundation of China(51971053);Young Elite Scientists Sponsorship Program(2019-2021QNRC001);Young Elite Scientists Sponsorship Program(2019-2021QNRC002);Young Elite Scientists Sponsorship Program(2019-2021QNRC003);Fundamental Research Funds for the Central Universities(N2202020)
Corresponding Authors:  PAN Hucheng, associate professor, Tel:13166643462, E-mail: panhc@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00290     OR     https://www.ams.org.cn/EN/Y2023/V59/I8/1087

Fig.1  Vertical sectional phase diagram of Mg-0.2Ce-xCa alloy calculated by Pandat software (x—mass fraction of Ca (0~2%), T—temperature)
Fig.2  Mechanical properties and microstructure of as-extruded Mg-0.2Ce-0.2Ca alloy (DRX—dynamic recrystallization, ED—extrusion direction, IPF—inverse pole figure)
(a) engineering stress-strain curve of as-extruded Mg-0.2Ce-0.2Ca alloy
(b, c) distribution maps of yield stress (YS) (b) and YS increment per weight (c) vs elongation of Mg alloys based on diverse alloy system[20,21]
(d) OM image (e) EBSD IPF map
(f) mean DRXed grain size distribution of Mg-0.2Ce-0.2Ca alloy (Inset shows the IPF of DRXed grains) (The color strip represents intensity represented as multiple of random distribution, the same in Figures below)
AlloyComposition / (mass fraction, %)State*σys / MPaσuts / MPaElongation / %
MgPure MgF871855
M1Mg-1.5MnF18925512
AZ10Mg-1.5Al-0.2Zn-0.2MnF15524010
AZ31Mg-3Al-1Zn-0.6MnF20026015
AZ61Mg-6Al-1Zn-0.6MnF23031016
AZ80Mg-8Al-0.5Zn-0.1MnT52753807
ZK21Mg-2Zn-0.6ZrF1952604
ZK60Mg-6Zn-0.5ZrF26034011
WE43Mg-4Y-3REF21429614
AXM100Mg-0.6Al-0.28Ca-0.25MnT62532778
MgCeCaMg-0.2Ce-0.2CaF3643742.5 (this work)
Table 1  Mechanical properties of commercial Mg alloys and Mg-0.2Ce-0.2Ca alloy[20,21]
Fig.3  OM images of the interrupted extrusion sample of Mg-0.2Ce-0.2Ca alloy
(a) low magnified microstructure near the die exit (Inset shows the view surface diagram)
(b-d) magnified microstructures right below the die exit at the locations as marked by rectangles in Fig.3a
Fig.4  Typical EBSD and TEM images at the position of 17.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet
(a) the IPF map
(b) grain boundary (GB) and twin boundary (TB) (θ—crystallographic misorientation angle between the two sides of the boundary)
(c) enlarged zone of Fig.4b (The schematic insert in Fig.4c illustrates characteristic position of the billet below extrusion die exit in Figs.4-7)
(d-f) existence of <a> dislocations (d) and <c + a> dislocations (e, f) (Insets in Figs.4e and f show the two-beam conditions of g = 0002 and g = 112¯0, respectively)
Fig.5  Typical EBSD and TEM images at the position of 12.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet
(a) EBSD IPF map (b) GB and TB (c) IPF
(d) IPF map of selected grains from Fig.5a
(e-j) TEM images showing twinning (e, f), low-angle grain boundary (LAGB) (g, i), <c>-component dislocations (h), and nano second phases (j) (Arrows in Figs.5g and h represent <c>-component dislocations)
Fig.6  Typical EBSD and TEM images at the position of 7.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet
(a) EBSD IPF map (b) GB and TB (c) IPF (d) selected area from Fig.6a
(e-j) TEM images showing dislocation tangles (e), DRXed grains (f), LAADF-STEM image (g), <c>-component dislocation (h, i), and HAADF-STEM image (j) (LAADF-STEM, HAADF-STEM—low and high angle annular dark-field scanning transmisson electron microscopy, respectively)
Fig.7  Typical EBSD results at the position of 2.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet, showing the IPF map (a), GB and TB (b), IPF (c), and selected area in Fig.7a (d)
Fig.8  Distribution diagram of misorientation angle at different positions from extrusion die exit
Fig.9  Proportion distribution of low angle grain boundary and twin boundary at different positions from extrusion die exit
Fig.10  KAM + GB overlapped map for as-extruded Mg-Ce-Ca alloy (KAM—kernel average misorientation)
1 Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
doi: 10.1016/j.jma.2022.04.001
2 Yang Q S, Jiang B, Song B, et al. The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet [J]. J. Magnes. Alloy., 2022, 10: 411
doi: 10.1016/j.jma.2020.08.005
3 Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
4 Luo Q, Zhai C, Gu Q F, et al. Experimental study and thermodynamic evaluation of Mg-La-Zn system [J]. J. Alloys Compd., 2020, 814: 152297
doi: 10.1016/j.jallcom.2019.152297
5 Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
潘复生, 蒋 斌. 镁合金塑性加工技术发展及应用 [J]. 金属学报, 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
6 Zha M, Wang S Q, Fang Y, et al. Advancement in research of rolled magnesium alloys with high performance [J]. J. Net. Form. Eng., 2020, 12(5): 20
查 敏, 王思清, 方 圆 等. 高性能轧制镁合金研究进展 [J]. 精密成形工程, 2020, 12(5): 20
7 Jiang M G, Xu C, Yan H, et al. Quasi-in-situ observing the rare earth texture evolution in an extruded Mg-Zn-Gd alloy with bimodal microstructure [J]. J. Magnes. Alloy., 2021, 9: 1797
doi: 10.1016/j.jma.2020.09.001
8 Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
吴国华, 童 鑫, 蒋 锐 等. 铸造Mg-RE合金晶粒细化行为研究现状与展望 [J]. 金属学报, 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
9 Zhang O, Hu H J, Hu G, et al. Research progress on composite refinement strengthening of magnesium alloy [J]. J. Net. Form. Eng., 2021, 13(6): 98
章 欧, 胡红军, 胡 刚 等. 镁合金复合细晶强化研究进展 [J]. 精密成形工程, 2021, 13(6): 98
10 Li J R, Xie D S, Zeng Z R, et al. Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy [J]. J. Mater. Sci. Technol., 2023, 132: 1
doi: 10.1016/j.jmst.2022.05.042
11 Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
doi: 10.1016/j.jma.2020.05.011
12 Xie D S, Pan H C, Li M, et al. Role of Al addition in modifying microstructure and mechanical properties of Mg-1.0wt%Ca based alloys [J]. Mater. Charact., 2020, 169: 110608
doi: 10.1016/j.matchar.2020.110608
13 Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
doi: 10.1016/j.scriptamat.2022.114735
14 Zhang A Y, Kang R, Wu L, et al. A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility [J]. Mater. Sci. Eng., 2019, A754: 269
15 Li M, Xie D S, Li J R, et al. Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg-Ca-Al-Zn-Mn alloys: The multiple roles of Nano-precipitations [J]. Mater. Charact., 2021, 175: 111049
doi: 10.1016/j.matchar.2021.111049
16 Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
17 Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
doi: 10.1016/j.jma.2016.08.003
18 Aljarrah M, Medraj M. Thermodynamic modelling of the Mg-Ca, Mg-Sr, Ca-Sr and Mg-Ca-Sr systems using the modified quasichemical model [J]. Calphad, 2008, 32: 240
doi: 10.1016/j.calphad.2007.09.001
19 Wang T, Jiang L, Mishra R K, et al. Effect of Ca addition on the intensity of the rare earth texture component in extruded magnesium alloys [J]. Metall. Mater. Trans., 2014, 45A: 4698
20 Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
21 Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
22 Wang F L, Barrett C D, McCabe R J, et al. Dislocation induced twin growth and formation of basal stacking faults in {10 1 ¯ 2} twins in pure Mg [J]. Acta Mater., 2019, 165: 471
doi: 10.1016/j.actamat.2018.12.003
23 Wang F L, Agnew S R. Dislocation transmutation by tension twinning in magnesium alloy AZ31 [J]. Int. J. Plast., 2016, 81: 63
doi: 10.1016/j.ijplas.2016.01.012
24 He C, Zhang Y, Liu C Q, et al. Unexpected partial dislocations within stacking faults in a cold deformed Mg-Bi alloy [J]. Acta Mater., 2020, 188: 328
doi: 10.1016/j.actamat.2020.02.010
25 Jiang M G, Xu C, Yan H, et al. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion [J]. Sci. Rep., 2018, 8: 16800
doi: 10.1038/s41598-018-35170-4 pmid: 30429510
26 Ye J, Mishra R K, Sachdev A K, et al. In situ TEM compression testing of Mg and Mg-0.2wt.%Ce single crystals [J]. Scr. Mater., 2011, 64: 292
doi: 10.1016/j.scriptamat.2010.09.047
27 Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
doi: 10.1016/j.actamat.2021.117151
28 Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
29 Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
30 Zhang D D, Pan H C, Li J R, et al. Fabrication of exceptionally high-strength Mg-4Sm-0.6Zn-0.4Zr alloy via low-temperature extrusion [J]. Mater. Sci. Eng., 2022, A833: 142565
31 Wen Y, Guan B, Xin Y C, et al. Solute atom mediated Hall-Petch relations for magnesium binary alloys [J]. Scr. Mater., 2022, 210: 114451
doi: 10.1016/j.scriptamat.2021.114451
32 Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
33 Yang Y, Liu Y, Yan S, et al. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy [J]. J. Magnes. Alloy., 2022,
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[8] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[9] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!