Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion
LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng(), REN Yuping, QIN Gaowu
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article:
LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion. Acta Metall Sin, 2023, 59(8): 1087-1096.
This study utilizes the Pandat software to design a novel ternary alloy, Mg-0.2Ce-0.2Ca (mass fraction, %). The Mg alloy samples are extruded conventionally and provide high strength and low alloying with yield strength of approximately 364 MPa and total content of only approximately 0.4%. The microstructures at different stages of extrusion are characterized, revealing the existence of twin in the Mg-0.2Ce-0.2Ca alloy throughout the extrusion process, indicating high twin migration resistance. In the middle and later stages of extrusion, dynamically recrystallized grains nucleate at regions of intersected twinning variants, leading to a significant reduction in the proportion of twinning interfaces. Moreover, during the early stage of extrusion, a large number of <c + a> dislocations are stored in the Mg-0.2Ce-0.2Ca alloy, and the dislocation-dominated recovery/recrystallization mechanism is functional until the late stage of extrusion due to the high slipping resistance of dislocations. This mechanism directly contributes to the formation of ultrafine grains in present Mg alloy. The results show that the addition of Ca increases the resistance of twinning motion in the Mg matrix, while the addition of Ce and Ca induces multisystem slip, which are the main mechanisms for regulating the microstructure evolution of Mg-Ce-Ca alloy during extrusion. These findings have significant implications for the development of new high-strength, low-alloyed Mg alloys.
Fund: National Key Research and Development Program of China(2021YFB3701000);National Natural Science Foundation of China(U2167213);National Natural Science Foundation of China(51971053);Young Elite Scientists Sponsorship Program(2019-2021QNRC001);Young Elite Scientists Sponsorship Program(2019-2021QNRC002);Young Elite Scientists Sponsorship Program(2019-2021QNRC003);Fundamental Research Funds for the Central Universities(N2202020)
Corresponding Authors:
PAN Hucheng, associate professor, Tel:13166643462, E-mail: panhc@atm.neu.edu.cn
Fig.1 Vertical sectional phase diagram of Mg-0.2Ce-xCa alloy calculated by Pandat software (x—mass fraction of Ca (0~2%), T—temperature)
Fig.2 Mechanical properties and microstructure of as-extruded Mg-0.2Ce-0.2Ca alloy (DRX—dynamic recrystallization, ED—extrusion direction, IPF—inverse pole figure) (a) engineering stress-strain curve of as-extruded Mg-0.2Ce-0.2Ca alloy (b, c) distribution maps of yield stress (YS) (b) and YS increment per weight (c) vs elongation of Mg alloys based on diverse alloy system[20,21] (d) OM image (e) EBSD IPF map (f) mean DRXed grain size distribution of Mg-0.2Ce-0.2Ca alloy (Inset shows the IPF of DRXed grains) (The color strip represents intensity represented as multiple of random distribution, the same in Figures below)
Alloy
Composition / (mass fraction, %)
State*
s / MPa
σuts / MPa
Elongation / %
Mg
Pure Mg
F
87
185
5
M1
Mg-1.5Mn
F
189
255
12
AZ10
Mg-1.5Al-0.2Zn-0.2Mn
F
155
240
10
AZ31
Mg-3Al-1Zn-0.6Mn
F
200
260
15
AZ61
Mg-6Al-1Zn-0.6Mn
F
230
310
16
AZ80
Mg-8Al-0.5Zn-0.1Mn
T5
275
380
7
ZK21
Mg-2Zn-0.6Zr
F
195
260
4
ZK60
Mg-6Zn-0.5Zr
F
260
340
11
WE43
Mg-4Y-3RE
F
214
296
14
AXM100
Mg-0.6Al-0.28Ca-0.25Mn
T6
253
277
8
MgCeCa
Mg-0.2Ce-0.2Ca
F
364
374
2.5 (this work)
Table 1 Mechanical properties of commercial Mg alloys and Mg-0.2Ce-0.2Ca alloy[20,21]
Fig.3 OM images of the interrupted extrusion sample of Mg-0.2Ce-0.2Ca alloy (a) low magnified microstructure near the die exit (Inset shows the view surface diagram) (b-d) magnified microstructures right below the die exit at the locations as marked by rectangles in Fig.3a
Fig.4 Typical EBSD and TEM images at the position of 17.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet (a) the IPF map (b) grain boundary (GB) and twin boundary (TB) (θ—crystallographic misorientation angle between the two sides of the boundary) (c) enlarged zone of Fig.4b (The schematic insert in Fig.4c illustrates characteristic position of the billet below extrusion die exit in Figs.4-7) (d-f) existence of <a> dislocations (d) and <c + a> dislocations (e, f) (Insets in Figs.4e and f show the two-beam conditions of g = 0002 and g = 110, respectively)
Fig.5 Typical EBSD and TEM images at the position of 12.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet (a) EBSD IPF map (b) GB and TB (c) IPF (d) IPF map of selected grains from Fig.5a (e-j) TEM images showing twinning (e, f), low-angle grain boundary (LAGB) (g, i), <c>-component dislocations (h), and nano second phases (j) (Arrows in Figs.5g and h represent <c>-component dislocations)
Fig.6 Typical EBSD and TEM images at the position of 7.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet (a) EBSD IPF map (b) GB and TB (c) IPF (d) selected area from Fig.6a (e-j) TEM images showing dislocation tangles (e), DRXed grains (f), LAADF-STEM image (g), <c>-component dislocation (h, i), and HAADF-STEM image (j) (LAADF-STEM, HAADF-STEM—low and high angle annular dark-field scanning transmisson electron microscopy, respectively)
Fig.7 Typical EBSD results at the position of 2.5 mm below extrusion die exit of Mg-0.2Ce-0.2Ca billet, showing the IPF map (a), GB and TB (b), IPF (c), and selected area in Fig.7a (d)
Fig.8 Distribution diagram of misorientation angle at different positions from extrusion die exit
Fig.9 Proportion distribution of low angle grain boundary and twin boundary at different positions from extrusion die exit
Fig.10 KAM + GB overlapped map for as-extruded Mg-Ce-Ca alloy (KAM—kernel average misorientation)
1
Song J F, Chen J, Xiong X M, et al. Research advances of magnesium and magnesium alloys worldwide in 2021 [J]. J. Magnes. Alloy., 2022, 10: 863
doi: 10.1016/j.jma.2022.04.001
2
Yang Q S, Jiang B, Song B, et al. The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet [J]. J. Magnes. Alloy., 2022, 10: 411
doi: 10.1016/j.jma.2020.08.005
3
Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
4
Luo Q, Zhai C, Gu Q F, et al. Experimental study and thermodynamic evaluation of Mg-La-Zn system [J]. J. Alloys Compd., 2020, 814: 152297
doi: 10.1016/j.jallcom.2019.152297
5
Pan F S, Jiang B. Development and application of plastic processing technologies of magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1362
doi: 10.11900/0412.1961.2021.00349
Jiang M G, Xu C, Yan H, et al. Quasi-in-situ observing the rare earth texture evolution in an extruded Mg-Zn-Gd alloy with bimodal microstructure [J]. J. Magnes. Alloy., 2021, 9: 1797
doi: 10.1016/j.jma.2020.09.001
8
Wu G H, Tong X, Jiang R, et al. Grain refinement of as-cast Mg-RE alloys: Research progress and future prospect [J]. Acta Metall. Sin., 2022, 58: 385
doi: 10.11900/0412.1961.2021.00519
Li J R, Xie D S, Zeng Z R, et al. Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy [J]. J. Mater. Sci. Technol., 2023, 132: 1
doi: 10.1016/j.jmst.2022.05.042
11
Li J R, Zhang A Y, Pan H C, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. J. Magnes. Alloy., 2021, 9: 1297
doi: 10.1016/j.jma.2020.05.011
12
Xie D S, Pan H C, Li M, et al. Role of Al addition in modifying microstructure and mechanical properties of Mg-1.0wt%Ca based alloys [J]. Mater. Charact., 2020, 169: 110608
doi: 10.1016/j.matchar.2020.110608
13
Li Z H, Sasaki T T, Uedono A, et al. Role of Zn on the rapid age-hardening in Mg-Ca-Zn alloys [J]. Scr. Mater., 2022, 216: 114735
doi: 10.1016/j.scriptamat.2022.114735
14
Zhang A Y, Kang R, Wu L, et al. A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility [J]. Mater. Sci. Eng., 2019, A754: 269
15
Li M, Xie D S, Li J R, et al. Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg-Ca-Al-Zn-Mn alloys: The multiple roles of Nano-precipitations [J]. Mater. Charact., 2021, 175: 111049
doi: 10.1016/j.matchar.2021.111049
16
Pan H C, Kang R, Li J R, et al. Mechanistic investigation of a low-alloy Mg-Ca-based extrusion alloy with high strength-ductility synergy [J]. Acta Mater., 2020, 186: 278
doi: 10.1016/j.actamat.2020.01.017
17
Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magnes. Alloy., 2016, 4: 151
doi: 10.1016/j.jma.2016.08.003
18
Aljarrah M, Medraj M. Thermodynamic modelling of the Mg-Ca, Mg-Sr, Ca-Sr and Mg-Ca-Sr systems using the modified quasichemical model [J]. Calphad, 2008, 32: 240
doi: 10.1016/j.calphad.2007.09.001
19
Wang T, Jiang L, Mishra R K, et al. Effect of Ca addition on the intensity of the rare earth texture component in extruded magnesium alloys [J]. Metall. Mater. Trans., 2014, 45A: 4698
20
Zeng Z R, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: A review of developments and prospects [J]. Int. Mater. Rev., 2019, 64: 27
doi: 10.1080/09506608.2017.1421439
21
Cihova M, Schäublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Mater., 2018, 158: 214
doi: 10.1016/j.actamat.2018.07.054
22
Wang F L, Barrett C D, McCabe R J, et al. Dislocation induced twin growth and formation of basal stacking faults in {10 1 ¯ 2} twins in pure Mg [J]. Acta Mater., 2019, 165: 471
doi: 10.1016/j.actamat.2018.12.003
23
Wang F L, Agnew S R. Dislocation transmutation by tension twinning in magnesium alloy AZ31 [J]. Int. J. Plast., 2016, 81: 63
doi: 10.1016/j.ijplas.2016.01.012
24
He C, Zhang Y, Liu C Q, et al. Unexpected partial dislocations within stacking faults in a cold deformed Mg-Bi alloy [J]. Acta Mater., 2020, 188: 328
doi: 10.1016/j.actamat.2020.02.010
25
Jiang M G, Xu C, Yan H, et al. Correlation between dynamic recrystallization and formation of rare earth texture in a Mg-Zn-Gd magnesium alloy during extrusion [J]. Sci. Rep., 2018, 8: 16800
doi: 10.1038/s41598-018-35170-4
pmid: 30429510
26
Ye J, Mishra R K, Sachdev A K, et al. In situ TEM compression testing of Mg and Mg-0.2wt.%Ce single crystals [J]. Scr. Mater., 2011, 64: 292
doi: 10.1016/j.scriptamat.2010.09.047
27
Wang J Y, Chen Y W, Chen Z, et al. Deformation mechanisms of Mg-Ca-Zn alloys studied by means of micropillar compression tests [J]. Acta Mater., 2021, 217: 117151
doi: 10.1016/j.actamat.2021.117151
28
Ashby M F. The deformation of plastically non-homogeneous materials [J]. Philos. Mag., 1970, 21: 399
29
Kubin L P, Mortensen A. Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues [J]. Scr. Mater., 2003, 48: 119
doi: 10.1016/S1359-6462(02)00335-4
30
Zhang D D, Pan H C, Li J R, et al. Fabrication of exceptionally high-strength Mg-4Sm-0.6Zn-0.4Zr alloy via low-temperature extrusion [J]. Mater. Sci. Eng., 2022, A833: 142565
31
Wen Y, Guan B, Xin Y C, et al. Solute atom mediated Hall-Petch relations for magnesium binary alloys [J]. Scr. Mater., 2022, 210: 114451
doi: 10.1016/j.scriptamat.2021.114451
32
Wang F L, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Mater. Sci. Eng., 2016, A666: 114
33
Yang Y, Liu Y, Yan S, et al. On the micromechanism of superior strength and ductility synergy in a heterostructured Mg-2.77Y alloy [J]. J. Magnes. Alloy., 2022,