Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1441-1458    DOI: 10.11900/0412.1961.2022.00322
Overview Current Issue | Archive | Adv Search |
Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy
AN Zibing1, MAO Shengcheng1(), ZHANG Ze1,2, HAN Xiaodong1()
1.Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
2.Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
Cite this article: 

AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy. Acta Metall Sin, 2022, 58(11): 1441-1458.

Download:  HTML  PDF(7106KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloys overcome the limitations posed by traditional alloys due to features such as high strength, toughness, high wear resistance, and corrosion resistance. These alloys are novel metallic materials with excellent application potential; however, typically an inverse relationship is observed between the strength and ductility of a metal, which includes high-entropy alloys. Therefore, the design and development of high entropy alloys with high strength and high ductility have become a limitation in current research. Recently, heterostructure design has achieved great success in strengthening and toughening traditional metallic materials. Heterostructured and high-entropy alloys has garnered much attention and research interest to realize the strength and toughness of high-entropy alloys with high strength and high ductility. This study reviews the existing design models for heterostructures from the heterostructure scale perspective. Furthermore, the effects of different heterostructures on the strengthening and toughening mechanism and mechanical properties were analyzed, and future microstructural designs with high strength and toughness were anticipated.

Key words:  high-entropy alloy      heterostructure      strengthening and toughening      mechanical property     
Received:  04 July 2022     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2021YFA1200201);National Natural Science Foundation of China(52071003);National Natural Science Foundation of China(91860202);National Natural Science Foundation of China(51988101);Interdisciplinary Cooperation Project of Beijing Science and Technology Nova Program(Z211100002121170);Beijing Municipal Education Commission Project(PXM2020_014204_000021);Discipline Innovation and Talent Introduction Program in Colleges and Universities(DB18015)
About author:  MAO Shengcheng, professor, Tel: (010)67396769, E-mail: scmao@bjut.edu.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00322     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1441

Fig.1  Comparison of strength and ductility of high-entropy alloys (HEAs) with other conventional alloys and homogeneous HEAs[25,34,43,46~48]
Fig.2  Chemical distribution and mechanical properties of CoCrFeNiMn, CoCrFeNiPd[38], and HfNbTaTiV[49] HEAs
(a) atomic-resolution chemical distribution of CoCrFeNiMn alloy
(b) atomic-resolution chemical distribution of CoCrFeNiPd alloy
(c) chemical distribution line scan of CoCrFeNiMn and CoCrFeNiPd alloys
(d) high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of CoCrFeNiPd alloys and lattice strain distribution (Inset is the SAED pattern)
(e) tensile mechanical properties of CoCrFeNiMn, CoCrFeNiPd alloys and compared with other alloys
(f) lattice distortion analysis and compressive properties of HfNbTaTiV alloy
Fig.3  Microstructure and mechanical properties of (HfNbTiZr)98O2 high-entropy alloy[56] (O-2 represents (TiZrHfNb)98O2, and N-2 represents (TiZrHfNb)98N2)
(a) atom probe tomography image and the O composition profile as a function of the distance to the interface for a selection of particles (left axis) and evolution of the composition of the main constituents relative to their respective matrix composition (right axis) (Ni is the number of the ith atom, while Ci and Ci, matrix are the concentrations of the ith atom in the ordered oxygen complexes (OOCs) and in the matrix, respectively; and the inset shows a close-up of one OOC)
(b) TEM image of O-2 HEA at 8% tensile strain (The red arrows indicate the dipolar walls)
(c) tensile mechanical properties of the (HfNbTiZr)98O2 alloy and compared alloys (σy is the yield strength (squares), σUTS is the ultimate strength (diamonds), and ε is the elongation (circles). The inset shows the corresponding strain-hardening response (dσ/dε))
Fig.4  Microstructure and mechanical properties of CoCrNi alloy[65]
(a, b) energy-filtered dark-field images from different diffuse superlattice peaks; examples showing the same domain contrast are marked with the arrows
(c) energy-filtered diffraction pattern of the region of interest; the red and blue circles indicate the dark-field imaging conditions of Figs.4a and b
(d) magnified view of the boxed part of the dark-field image in Fig.4a, with identified short-range-ordering (SRO) domains marked by the red circles
(e) the histogram of identified domain diameters (d is the average diameter, σ' isthe standard deviation)
(f-i) tensile mechanical properties of the CoCrNi alloys without (f, h) and with (g, i) SRO structure, respectively (DIC—digital image correlation) (Insets in Figs.4f and g are the sample images of the strain distribution during elastic leading, as determined by DIC)
Fig.5  Microstructure and chemical distributions of VCoNi alloy[39]
(a) HAADF-STEM image and CSRO region size distributions of VCoNi alloy (CSRO—chemical short-range order, FFT—fast Fourier transformation)
(b) atomic resolution energy dispersive spectroscopy (EDS) mapping showing the chemical distribution
(c) lattice strain (ε) distribution of VCoNi alloy before and after tensile tests, respectively (Insets in Fig.5c are a close-up view showing the edge dislocation-induced strain-field)
Fig.6  Microstructure and mechanical properties of (FeCoNi)86Al7Ti7 alloy[34]
(a) TEM image
(b) high-resolution TEM image and corresponding FFT images
(c) tensile properties of (FeCoNi)86Al7Ti7 alloy at room temperature, the alloy exhibits ductile dimpled structures without macroscopic necking
(d) work-hardening rate vs true strain curves of (FeCoNi)86Al7Ti7 alloy at room temperature (MBIP—microband-induced plasticity)
(e) TEM images of the sample at different tensile strains (MBs—microbands, HDDWs—high density dislocation walls)
Fig.7  Microstructures and mechanical properties of Al0.5Cr0.9FeNi2.5V0.2 andHfNbTiV alloys
(a) HAADF-STEM image and the corresponding FFT images of Al0.5Cr0.9FeNi2.5V0.2 alloy[72]
(b) tensile properties of Al0.5Cr0.9FeNi2.5V0.2 alloy at room temperature (ST—solution-treated)[72]
(c) HAADF-STEM images and the corresponding SAED patterns of HfNbTiV alloy[73]
(d) tensile property of HfNbTiV alloy at room temperature[73] (Insets are SEM images of the fracture surface)
Fig.8  Microstructure and mechanical properties of Ni32.8Fe21.9Co21.9Cr10.9Al7.5Ti5.0 alloy[74]
(a) TEM image and the size distributions of L12 phase and fcc matrix
(b) tensile properties of Ni32.8Fe21.9Co21.9Cr10.9Al7.5Ti5.0 alloy at room temperature (CNL—coherent nanolamellar)
(c) TEM images of Ni32.8Fe21.9Co21.9Cr10.9Al7.5Ti5.0 alloy at different tensile strains
Fig.9  Microstructures of RASP CoCrFeNiMn alloy before and after tensile tests[84] (RASP—rotationally accelerated shot peening, CG—coarse grain, TD—tensile direction, LD—longitudinal direction)
(a) typical IPF image before tensile test (IPF—inverse pole figure)
(b) image quality map before tensile test
(c) KAM map before tensile test (KAM—kernel average misorientation)
(d) image quality map of the coarse grain sample after tensile test
(e) KAM map of the coarse grain sample after tensile test
(f) image quality map of the RASP sample after tensile tests
(g) KAM map of the RASP sample after tensile test
Fig.10  Hierarchically arranged herringbone microstructure of Fe20Co20Ni41Al19 high entropy alloy[35]
(a-c) conventionally cast eutectic high-entropy alloy (EHEA) serving here as reference material
(a) SEM backscattered electron image
(b) electron backscattering diffraction (EBSD) phase map (left) and IPF map (right)
(c) schematic diagram
(d-i) directionally solidified EHEA with a hierarchical herringbone microstructure (The black arrows in Figs.10d and e indicate the directional solidification (DS) direction; AEC—aligned eutectic colonies, BEC—branched eutectic colonies)
(d) SEM backscatter electron image showing that the microstructure is composed of columnar grains. Grain boundaries are marked by black dashed lines
(e) enlarged EBSD phase and IPF maps showing the columnar grain consisting of AEC and BEC. Black solid and dashed lines mark grain and colony boundaries, respectively
(f, i) schematic diagram of herringbone structure and its formation principle, respectively
(g) HAADF-STEM image and related SAED patterns of B2 and L12 phases. The HAADF-STEM image shows clean dual-phase lamellae without evidence of nanoprecipitates or other phases, as is also indicated in Fig.10f
(h) synchrotron high-energy X-ray diffraction (SHE-XRD) of B2 and L12 phases
Fig.11  Microstructure and hetero-deformation induced (HDI) hardening of CoCrNi alloy[46]
(a) EBSD and TEM image of CoCrNi alloy (LAGB—low angle grain boundary, HAGB—high-angle grain boundary, TB—twin boundary, UFG—ultrafine-grained)
(b) true stress-strain curves during LUR (loading-unloading-reloading) tests at 298 K and 77 K. Hysteresis loops at the maximum uniform strain. Comparison of HDI hardening with the total strain hardening in the CoCrNi alloy at 298 K and 77 K (εrp—reverse plastic strain, σf—flow stress, σ0.2—yield stress, σb—back stress, σb, 0.2—back stress at yielding)
(c) TEM image of the deformed CoCrNi alloy (NG—nanograin)
Fig.12  Gradient microstructures of the RASP treated Co21.5Cr21.5Fe21.5Mn21.5Ni14 alloy[42]
(a) schematic of the grain size gradient through the plate thickness
(b-d) EBSD images of the alloy at different depths from the surface
(e-g) TEM images of twin structures in regions (I), (II) and (III) (The insets are SAED patterns from each region)
(h) a high-resolution HAADF-STEM image of the deformation twins in region (I)
(i) variation of the average grain size through the plate thickness
(j) variation of the average thickness of deformation twins through the plate thickness
Fig.13  Tensile properties for coarse grain (CG), SMAT and SMAT-aged samples[92] (SMAT—surface mechanical attrition treatment)
(a) engineering stress-strain curves
(b) hardening rate and true stress as a function of true strain
1 Zherebtsov S, Salishchev G, Galeyev R, et al. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation [J]. Mater. Trans., 2005, 46: 2020
doi: 10.2320/matertrans.46.2020
2 Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12: 6158
doi: 10.1038/s41467-021-26374-w pmid: 34697309
3 Huskins E L, Cao B, Ramesh K T. Strengthening mechanisms in an Al-Mg alloy [J]. Mater. Sci. Eng., 2010, A527: 1292
4 Altıparmak S C, Yardley V A, Shi Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing [J]. Int. J. Lightweight Mater. Manuf., 2021, 4: 246
5 Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580 pmid: 24686581
6 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
7 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
9 Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
10 George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
11 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
12 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
13 Ding Z Y, Cao B X, Luan J H, et al. Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys [J]. Corros. Sci., 2021, 184: 109365
doi: 10.1016/j.corsci.2021.109365
14 Geng Y S, Chen J, Tan H, et al. Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures [J]. Wear, 2020, 456-457: 203368
doi: 10.1016/j.wear.2020.203368
15 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
doi: 10.1002/adem.200700240
16 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
17 Oh H S, Kim S J, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys [J]. Nat. Commun., 2019, 10: 2090
doi: 10.1038/s41467-019-10012-7 pmid: 31064988
18 Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
doi: 10.1038/s41524-019-0265-1
19 Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
doi: 10.1016/j.scriptamat.2014.09.010
20 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
21 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
22 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.201701678
23 Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
24 Rao J C, Diao H Y, Ocelík V, et al. Secondary phases in Al x CoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal [J]. Acta Mater., 2017, 131: 206
doi: 10.1016/j.actamat.2017.03.066
25 Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
doi: 10.1080/21663831.2021.1913768
26 Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
27 He Y X, Yang H X, Zhao C D, et al. Enhancing mechanical properties of Al0.25CoCrFeNi high-entropy alloy via cold rolling and subsequent annealing [J]. J. Alloys Compd., 2020, 830: 154645
doi: 10.1016/j.jallcom.2020.154645
28 He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
29 Chen D, He F, Han B, et al. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys [J]. Intermetallics, 2019, 110: 106476
doi: 10.1016/j.intermet.2019.106476
30 Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
doi: 10.1016/j.actamat.2016.06.063
31 Naeem M, He H Y, Harjo S, et al. Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature [J]. Scr. Mater., 2020, 188: 21
doi: 10.1016/j.scriptamat.2020.07.004
32 Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
33 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
34 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
35 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
36 Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys [J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
37 Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1 pmid: 31819051
38 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
39 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
40 Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w pmid: 35197473
41 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
42 An Z B, Mao S C, Liu Y N, et al. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92: 195
doi: 10.1016/j.jmst.2021.02.059
43 Zheng X Y, Xie W B, Zeng L F, et al. Achieving high strength and ductility in a heterogeneous-grain-structured CrCoNi alloy processed by cryorolling and subsequent short-annealing [J]. Mater. Sci. Eng., 2021, A821: 141610
44 Zhang C, MacDonald B E, Guo F W, et al. Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior [J]. Scr. Mater., 2020, 188: 16
doi: 10.1016/j.scriptamat.2020.07.006
45 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
46 Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
47 Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6 pmid: 34349105
48 Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z pmid: 32404913
49 An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
50 Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.202004029
51 Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33: 2102401
doi: 10.1002/adma.202102401
52 Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
53 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
54 Yin S, Ding J, Asta M, et al. Ab initio modeling of the role of local chemical short-range order on the Peierls potential of screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 1
doi: 10.1038/s41524-019-0267-z
55 Hu Q, Guo S, Guo J L, et al. Effect of Mo on high-temperature strength of refractory complex concentrated alloys: A perspective of electronegativity difference [J]. J. Alloys Compd., 2022, 906: 164186
doi: 10.1016/j.jallcom.2022.164186
56 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
57 Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
doi: 10.1016/j.actamat.2017.09.062
58 Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
doi: 10.1016/j.actamat.2020.02.041
59 Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
doi: 10.1007/s11669-017-0582-3
60 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
61 Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
doi: 10.1016/j.actamat.2020.04.034
62 Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
63 Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
64 He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
65 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
66 Su I A, Tseng K K, Yeh J W, et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35 [J]. Scr. Mater., 2022, 206: 114225
doi: 10.1016/j.scriptamat.2021.114225
67 Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys [J]. Acta Metall., 1989, 37: 2177
doi: 10.1016/0001-6160(89)90143-0
68 Hamdi F, Asgari S. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scr. Mater., 2010, 62: 693
doi: 10.1016/j.scriptamat.2010.01.031
69 Cao B X, Zhao Y L, Yang T, et al. L12 -strengthened Co-rich alloys for high-temperature structural applications: A critical review [J]. Adv. Eng. Mater., 2021, 23: 2100453
doi: 10.1002/adem.202100453
70 Yang T, Cao B X, Zhang T L, et al. Chemically complex intermetallic alloys: A new frontier for innovative structural materials [J]. Mater. Today, 2022, 52: 161
doi: 10.1016/j.mattod.2021.12.004
71 Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
doi: 10.1088/0034-4885/12/1/309
72 Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
73 An Z B, Mao S C, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Mater. Horiz., 2021, 8: 948
doi: 10.1039/d0mh01341b pmid: 34821325
74 Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z pmid: 33288762
75 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
76 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
77 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
78 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
79 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
80 Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
doi: 10.1016/j.intermet.2014.05.014
81 Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
doi: 10.1016/j.actamat.2018.12.012
82 Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
83 Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
84 Hasan M N, Liu Y F, An X H, et al. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures [J]. Int. J. Plast., 2019, 123: 178
doi: 10.1016/j.ijplas.2019.07.017
85 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
86 Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
doi: 10.1016/j.scriptamat.2021.114132
87 Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure [J]. Scr. Mater., 2020, 186: 336
doi: 10.1016/j.scriptamat.2020.04.035
88 Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2 pmid: 30700708
89 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
90 Fu Z Q, Jiang L, Wardini J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J]. Sci. Adv., 2018, 4: eaat8712
doi: 10.1126/sciadv.aat8712
91 Jia Z Y, Zhang S Z, Huo J T, et al. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties [J]. Mater. Sci. Eng., 2022, A834: 142617
92 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
No Suggested Reading articles found!