|
|
Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy |
AN Zibing1, MAO Shengcheng1( ), ZHANG Ze1,2, HAN Xiaodong1( ) |
1.Institute of Microstructure and Properties of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China 2.Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China |
|
Cite this article:
AN Zibing, MAO Shengcheng, ZHANG Ze, HAN Xiaodong. Strengthening-Toughening Mechanism and Mechanical Properties of Span-Scale Heterostructure High-Entropy Alloy. Acta Metall Sin, 2022, 58(11): 1441-1458.
|
Abstract High-entropy alloys overcome the limitations posed by traditional alloys due to features such as high strength, toughness, high wear resistance, and corrosion resistance. These alloys are novel metallic materials with excellent application potential; however, typically an inverse relationship is observed between the strength and ductility of a metal, which includes high-entropy alloys. Therefore, the design and development of high entropy alloys with high strength and high ductility have become a limitation in current research. Recently, heterostructure design has achieved great success in strengthening and toughening traditional metallic materials. Heterostructured and high-entropy alloys has garnered much attention and research interest to realize the strength and toughness of high-entropy alloys with high strength and high ductility. This study reviews the existing design models for heterostructures from the heterostructure scale perspective. Furthermore, the effects of different heterostructures on the strengthening and toughening mechanism and mechanical properties were analyzed, and future microstructural designs with high strength and toughness were anticipated.
|
Received: 04 July 2022
|
|
Fund: National Key Research and Development Program of China(2021YFA1200201);National Natural Science Foundation of China(52071003);National Natural Science Foundation of China(91860202);National Natural Science Foundation of China(51988101);Interdisciplinary Cooperation Project of Beijing Science and Technology Nova Program(Z211100002121170);Beijing Municipal Education Commission Project(PXM2020_014204_000021);Discipline Innovation and Talent Introduction Program in Colleges and Universities(DB18015) |
About author: MAO Shengcheng, professor, Tel: (010)67396769, E-mail: scmao@bjut.edu.cn;
|
1 |
Zherebtsov S, Salishchev G, Galeyev R, et al. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation [J]. Mater. Trans., 2005, 46: 2020
doi: 10.2320/matertrans.46.2020
|
2 |
Chong Y, Zhang R P, Hooshmand M S, et al. Elimination of oxygen sensitivity in α-titanium by substitutional alloying with Al [J]. Nat. Commun., 2021, 12: 6158
doi: 10.1038/s41467-021-26374-w
pmid: 34697309
|
3 |
Huskins E L, Cao B, Ramesh K T. Strengthening mechanisms in an Al-Mg alloy [J]. Mater. Sci. Eng., 2010, A527: 1292
|
4 |
Altıparmak S C, Yardley V A, Shi Z S, et al. Challenges in additive manufacturing of high-strength aluminium alloys and current developments in hybrid additive manufacturing [J]. Int. J. Lightweight Mater. Manuf., 2021, 4: 246
|
5 |
Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
doi: 10.1038/ncomms4580
pmid: 24686581
|
6 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.200300567
|
7 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
8 |
Yeh J W. Recent progress in high-entropy alloys [J]. Ann. Chim. Sci. Mat., 2006, 31: 633
doi: 10.3166/acsm.31.633-648
|
9 |
Zhang W R, Liaw P K, Zhang Y. Science and technology in high-entropy alloys [J]. Sci. China Mater., 2018, 61: 2
doi: 10.1007/s40843-017-9195-8
|
10 |
George E P, Raabe D, Ritchie R O. High-entropy alloys [J]. Nat. Rev. Mater., 2019, 4: 515
doi: 10.1038/s41578-019-0121-4
|
11 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
12 |
Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
|
13 |
Ding Z Y, Cao B X, Luan J H, et al. Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys [J]. Corros. Sci., 2021, 184: 109365
doi: 10.1016/j.corsci.2021.109365
|
14 |
Geng Y S, Chen J, Tan H, et al. Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures [J]. Wear, 2020, 456-457: 203368
doi: 10.1016/j.wear.2020.203368
|
15 |
Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10: 534
doi: 10.1002/adem.200700240
|
16 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
doi: 10.1063/1.3587228
|
17 |
Oh H S, Kim S J, Odbadrakh K, et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys [J]. Nat. Commun., 2019, 10: 2090
doi: 10.1038/s41467-019-10012-7
pmid: 31064988
|
18 |
Zhou Z Q, Zhou Y J, He Q F, et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys [J]. npj Comput. Mater., 2019, 5: 128
doi: 10.1038/s41524-019-0265-1
|
19 |
Wang Z J, Huang Y H, Yang Y, et al. Atomic-size effect and solid solubility of multicomponent alloys [J]. Scr. Mater., 2015, 94: 28
doi: 10.1016/j.scriptamat.2014.09.010
|
20 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
doi: 10.1016/j.jallcom.2011.02.171
|
21 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
|
22 |
Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.201701678
|
23 |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
doi: 10.1016/j.actamat.2014.08.026
|
24 |
Rao J C, Diao H Y, Ocelík V, et al. Secondary phases in Al x CoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal [J]. Acta Mater., 2017, 131: 206
doi: 10.1016/j.actamat.2017.03.066
|
25 |
Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
doi: 10.1080/21663831.2021.1913768
|
26 |
Gwalani B, Soni V, Lee M, et al. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy [J]. Mater. Des., 2017, 121: 254
doi: 10.1016/j.matdes.2017.02.072
|
27 |
He Y X, Yang H X, Zhao C D, et al. Enhancing mechanical properties of Al0.25CoCrFeNi high-entropy alloy via cold rolling and subsequent annealing [J]. J. Alloys Compd., 2020, 830: 154645
doi: 10.1016/j.jallcom.2020.154645
|
28 |
He F, Chen D, Han B, et al. Design of D022 superlattice with superior strengthening effect in high entropy alloys [J]. Acta Mater., 2019, 167: 275
doi: 10.1016/j.actamat.2019.01.048
|
29 |
Chen D, He F, Han B, et al. Synergistic effect of Ti and Al on L12-phase design in CoCrFeNi-based high entropy alloys [J]. Intermetallics, 2019, 110: 106476
doi: 10.1016/j.intermet.2019.106476
|
30 |
Liu W H, Lu Z P, He J Y, et al. Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases [J]. Acta Mater., 2016, 116: 332
doi: 10.1016/j.actamat.2016.06.063
|
31 |
Naeem M, He H Y, Harjo S, et al. Extremely high dislocation density and deformation pathway of CrMnFeCoNi high entropy alloy at ultralow temperature [J]. Scr. Mater., 2020, 188: 21
doi: 10.1016/j.scriptamat.2020.07.004
|
32 |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
doi: 10.1016/j.actamat.2015.04.014
|
33 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
34 |
Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815
pmid: 30467166
|
35 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
36 |
Wei D X, Li X Q, Schönecker S, et al. Development of strong and ductile metastable face-centered cubic single-phase high-entropy alloys [J]. Acta Mater., 2019, 181: 318
doi: 10.1016/j.actamat.2019.09.050
|
37 |
Ma E, Wu X L. Tailoring heterogeneities in high-entropy alloys to promote strength-ductility synergy [J]. Nat. Commun., 2019, 10: 5623
doi: 10.1038/s41467-019-13311-1
pmid: 31819051
|
38 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
|
39 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
|
40 |
Wang J, Jiang P, Yuan F P, et al. Chemical medium-range order in a medium-entropy alloy [J]. Nat. Commun., 2022, 13: 1021
doi: 10.1038/s41467-022-28687-w
pmid: 35197473
|
41 |
Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
|
42 |
An Z B, Mao S C, Liu Y N, et al. Hierarchical grain size and nanotwin gradient microstructure for improved mechanical properties of a non-equiatomic CoCrFeMnNi high-entropy alloy [J]. J. Mater. Sci. Technol., 2021, 92: 195
doi: 10.1016/j.jmst.2021.02.059
|
43 |
Zheng X Y, Xie W B, Zeng L F, et al. Achieving high strength and ductility in a heterogeneous-grain-structured CrCoNi alloy processed by cryorolling and subsequent short-annealing [J]. Mater. Sci. Eng., 2021, A821: 141610
|
44 |
Zhang C, MacDonald B E, Guo F W, et al. Cold-workable refractory complex concentrated alloys with tunable microstructure and good room-temperature tensile behavior [J]. Scr. Mater., 2020, 188: 16
doi: 10.1016/j.scriptamat.2020.07.006
|
45 |
Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
|
46 |
Yang M X, Yan D S, Yuan F P, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength [J]. Proc. Natl. Acad. Sci. USA, 2018, 115: 7224
doi: 10.1073/pnas.1807817115
|
47 |
Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6
pmid: 34349105
|
48 |
Du X H, Li W P, Chang H T, et al. Dual heterogeneous structures lead to ultrahigh strength and uniform ductility in a Co-Cr-Ni medium-entropy alloy [J]. Nat. Commun., 2020, 11: 2390
doi: 10.1038/s41467-020-16085-z
pmid: 32404913
|
49 |
An Z B, Mao S C, Liu Y N, et al. A novel HfNbTaTiV high-entropy alloy of superior mechanical properties designed on the principle of maximum lattice distortion [J]. J. Mater. Sci. Technol., 2021, 79: 109
doi: 10.1016/j.jmst.2020.10.073
|
50 |
Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.202004029
|
51 |
Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33: 2102401
doi: 10.1002/adma.202102401
|
52 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
doi: 10.1016/j.jmst.2020.06.018
|
53 |
Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
|
54 |
Yin S, Ding J, Asta M, et al. Ab initio modeling of the role of local chemical short-range order on the Peierls potential of screw dislocations in body-centered cubic high-entropy alloys [J]. npj Comput. Mater., 2020, 6: 1
doi: 10.1038/s41524-019-0267-z
|
55 |
Hu Q, Guo S, Guo J L, et al. Effect of Mo on high-temperature strength of refractory complex concentrated alloys: A perspective of electronegativity difference [J]. J. Alloys Compd., 2022, 906: 164186
doi: 10.1016/j.jallcom.2022.164186
|
56 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
57 |
Lilensten L, Couzinié J P, Perrière L, et al. Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms [J]. Acta Mater., 2018, 142: 131
doi: 10.1016/j.actamat.2017.09.062
|
58 |
Antillon E, Woodward C, Rao S I, et al. Chemical short range order strengthening in a model FCC high entropy alloy [J]. Acta Mater., 2020, 190: 29
doi: 10.1016/j.actamat.2020.02.041
|
59 |
Fernández-Caballero A, Wróbel J S, Mummery P M, et al. Short-range order in high entropy alloys: Theoretical formulation and application to Mo-Nb-Ta-V-W system [J]. J. Phase Equilib. Diffus., 2017, 38: 391
doi: 10.1007/s11669-017-0582-3
|
60 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
|
61 |
Fantin A, Lepore G O, Manzoni A M, et al. Short-range chemical order and local lattice distortion in a compositionally complex alloy [J]. Acta Mater., 2020, 193: 329
doi: 10.1016/j.actamat.2020.04.034
|
62 |
Jian W R, Xie Z C, Xu S Z, et al. Effects of lattice distortion and chemical short-range order on the mechanisms of deformation in medium entropy alloy CoCrNi [J]. Acta Mater., 2020, 199: 352
doi: 10.1016/j.actamat.2020.08.044
|
63 |
Kostiuchenko T, Ruban A V, Neugebauer J, et al. Short-range order in face-centered cubic VCoNi alloys [J]. Phys. Rev. Mater., 2020, 4: 113802
|
64 |
He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
|
65 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
|
66 |
Su I A, Tseng K K, Yeh J W, et al. Strengthening mechanisms and microstructural evolution of ductile refractory medium-entropy alloy Hf20Nb10Ti35Zr35 [J]. Scr. Mater., 2022, 206: 114225
doi: 10.1016/j.scriptamat.2021.114225
|
67 |
Gerold V, Karnthaler H P. On the origin of planar slip in f.c.c. alloys [J]. Acta Metall., 1989, 37: 2177
doi: 10.1016/0001-6160(89)90143-0
|
68 |
Hamdi F, Asgari S. Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys [J]. Scr. Mater., 2010, 62: 693
doi: 10.1016/j.scriptamat.2010.01.031
|
69 |
Cao B X, Zhao Y L, Yang T, et al. L12 -strengthened Co-rich alloys for high-temperature structural applications: A critical review [J]. Adv. Eng. Mater., 2021, 23: 2100453
doi: 10.1002/adem.202100453
|
70 |
Yang T, Cao B X, Zhang T L, et al. Chemically complex intermetallic alloys: A new frontier for innovative structural materials [J]. Mater. Today, 2022, 52: 161
doi: 10.1016/j.mattod.2021.12.004
|
71 |
Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
doi: 10.1088/0034-4885/12/1/309
|
72 |
Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
|
73 |
An Z B, Mao S C, Yang T, et al. Spinodal-modulated solid solution delivers a strong and ductile refractory high-entropy alloy [J]. Mater. Horiz., 2021, 8: 948
doi: 10.1039/d0mh01341b
pmid: 34821325
|
74 |
Fan L, Yang T, Zhao Y L, et al. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures [J]. Nat. Commun., 2020, 11: 6240
doi: 10.1038/s41467-020-20109-z
pmid: 33288762
|
75 |
Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
|
76 |
Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
|
77 |
Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
|
78 |
Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
|
79 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
80 |
Otto F, Hanold N L, George E P. Microstructural evolution after thermomechanical processing in an equiatomic, single-phase CoCrFeMnNi high-entropy alloy with special focus on twin boundaries [J]. Intermetallics, 2014, 54: 39
doi: 10.1016/j.intermet.2014.05.014
|
81 |
Wu S W, Wang G, Wang Q, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure [J]. Acta Mater., 2019, 165: 444
doi: 10.1016/j.actamat.2018.12.012
|
82 |
Wang X, Li Y S, Zhang Q, et al. Gradient structured copper by rotationally accelerated shot peening [J]. J. Mater. Sci. Technol., 2017, 33: 758
doi: 10.1016/j.jmst.2016.11.006
|
83 |
Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater., 2002, 50: 4603
doi: 10.1016/S1359-6454(02)00310-5
|
84 |
Hasan M N, Liu Y F, An X H, et al. Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures [J]. Int. J. Plast., 2019, 123: 178
doi: 10.1016/j.ijplas.2019.07.017
|
85 |
Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
|
86 |
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
doi: 10.1016/j.scriptamat.2021.114132
|
87 |
Xiong T, Zheng S J, Pang J Y, et al. High-strength and high-ductility AlCoCrFeNi2.1 eutectic high-entropy alloy achieved via precipitation strengthening in a heterogeneous structure [J]. Scr. Mater., 2020, 186: 336
doi: 10.1016/j.scriptamat.2020.04.035
|
88 |
Shi P J, Ren W L, Zheng T X, et al. Enhanced strength-ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae [J]. Nat. Commun., 2019, 10: 489
doi: 10.1038/s41467-019-08460-2
pmid: 30700708
|
89 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
90 |
Fu Z Q, Jiang L, Wardini J L, et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength [J]. Sci. Adv., 2018, 4: eaat8712
doi: 10.1126/sciadv.aat8712
|
91 |
Jia Z Y, Zhang S Z, Huo J T, et al. Heterogeneous precipitation strengthened non-equiatomic NiCoFeAlTi medium entropy alloy with excellent mechanical properties [J]. Mater. Sci. Eng., 2022, A834: 142617
|
92 |
Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|