|
|
Heterostructured Functional Materials with Ordered Structures |
ZHANG Hai-Tian1( ), ZHANG Xiangyi2( ) |
1.School of Materials Science and Engineering, Beihang University, Beijing 100191, China 2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China |
|
Cite this article:
ZHANG Hai-Tian, ZHANG Xiangyi. Heterostructured Functional Materials with Ordered Structures. Acta Metall Sin, 2022, 58(11): 1459-1466.
|
Abstract Heterostructured materials (HSMs) can be created by introducing differently sized constituent components to enhance their performance by disentangling conflicting materials' properties, through the synergistic coupling effect of the constituents. This strategy has been successfully applied to structural materials to overcome the trade-off between strength and ductility and achieve superior mechanical properties; however, it remains less explored for functional materials. Beyond the random distribution of the constituents in HSMs, the ordering of constituents, e.g., grains, phases, and domain structures, can further enhance their coupling effect, thus leading to improved material properties or even transformative new functionalities. In this short perspective article, permanent magnetic materials are used as examples to review the recent progress in achieving enhanced properties and/or creating new physical mechanisms by building HSMs with ordered structures. This paper demonstrates that high-performance or revolutionary functional materials can be achieved by creating ordered HSMs.
|
Received: 01 June 2022
|
|
Fund: National Key Research and Development Program of China(2021YFB3500302);National Natural Science Foundation of China(51931007);National Natural Science Foundation of China(51971196);National Natural Science Foundation of China(52071279) |
About author: ZHANG Hai-Tian, professor, Tel: (010)82317132, E-mail: htzhang@buaa.edu.cn;
|
1 |
Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
|
2 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
3 |
Zhang X Y. Heterostructures: New opportunities for functional materials [J]. Mater. Res. Lett., 2020, 8: 49
doi: 10.1080/21663831.2019.1691668
|
4 |
Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
|
5 |
Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905
pmid: 31123122
|
6 |
Li X H, Lou L, Song W P, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products [J]. Adv. Mater., 2017, 29: 1606430
doi: 10.1002/adma.201606430
|
7 |
Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures [J]. Nature, 2012, 489: 414
doi: 10.1038/nature11439
|
8 |
Shen K, Zhang L, Chen X D, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359: 206
doi: 10.1126/science.aao3403
pmid: 29326271
|
9 |
Zhang H T, Zhang X Y. Strong magnets with ordered structures [J]. Mater. Res. Lett., 2022, 10: 1
doi: 10.1080/21663831.2021.2008541
|
10 |
Zhang H T, Park T J, Islam A N M N, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence [J]. Science, 2022, 375: 533
doi: 10.1126/science.abj7943
|
11 |
National Science Foundation of China. 2019 annual project guide for the major research program for basic research of high-performance materials with ordered functional primitive structure[EB/OL]. (2019-08-16).
|
|
国家自然科学基金委员会. 功能基元序构的高性能材料基础研究重大研究计划2019年度项目指南 [EB/OL]. (2019-08-16).
|
12 |
Lou L, Li Y Q, Li X H, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures [J]. Adv. Mater., 2021, 33: 2102800
doi: 10.1002/adma.202102800
|
13 |
Li H L, Li X H, Guo D F, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets [J]. Nano Lett., 2016, 16: 5631
doi: 10.1021/acs.nanolett.6b02210
pmid: 27570896
|
14 |
Sellmyer D J. Strong magnets by self-assembly [J]. Nature, 2002, 420: 374
doi: 10.1038/420374a
|
15 |
Jones N. Materials science: The pull of stronger magnets [J]. Nature, 2011, 472: 22
doi: 10.1038/472022a
|
16 |
Li X H, Lou L, Song W P, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products [J]. Nano Lett., 2017, 17: 2985
doi: 10.1021/acs.nanolett.7b00264
pmid: 28402670
|
17 |
Yan A, Gutfleisch O, Gemming T, et al. Microchemistry and magnetization reversal mechanism in melt-spun 2∶17-type Sm-Co magnets [J]. Appl. Phys. Lett., 2003, 83: 2208
doi: 10.1063/1.1611641
|
18 |
Sepehri-Amin H, Thielsch J, Fischbacher J, et al. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets [J]. Acta Mater., 2017, 126: 1
doi: 10.1016/j.actamat.2016.12.050
|
19 |
Huang G W, Li X H, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density [J]. Small, 2018, 14: 1800619
doi: 10.1002/smll.201800619
|
20 |
Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
|
21 |
Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 [J]. Science, 2021, 371: 722
doi: 10.1126/science.abb3517
pmid: 33574210
|
22 |
Chen Q X, Liu Y H, Qi X Z, et al. Ordered nanostructure enhances electrocatalytic performance by directional micro-electric field [J]. J. Am. Chem. Soc., 2019, 141: 10729
doi: 10.1021/jacs.9b03617
|
23 |
Li J Z, Sharma N, Jiang Z S, et al. Dynamics of particle network in composite battery cathodes [J]. Science, 2022, 376: 517
doi: 10.1126/science.abm8962
pmid: 35482882
|
24 |
Begley M R, Gianola D S, Ray T R. Bridging functional nanocomposites to robust macroscale devices [J]. Science, 2019, 364: eaav4299
doi: 10.1126/science.aav4299
|
25 |
Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090
pmid: 18219332
|
26 |
Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|