Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1459-1466    DOI: 10.11900/0412.1961.2022.00274
Perspective Current Issue | Archive | Adv Search |
Heterostructured Functional Materials with Ordered Structures
ZHANG Hai-Tian1(), ZHANG Xiangyi2()
1.School of Materials Science and Engineering, Beihang University, Beijing 100191, China
2.State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Cite this article: 

ZHANG Hai-Tian, ZHANG Xiangyi. Heterostructured Functional Materials with Ordered Structures. Acta Metall Sin, 2022, 58(11): 1459-1466.

Download:  HTML  PDF(1972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Heterostructured materials (HSMs) can be created by introducing differently sized constituent components to enhance their performance by disentangling conflicting materials' properties, through the synergistic coupling effect of the constituents. This strategy has been successfully applied to structural materials to overcome the trade-off between strength and ductility and achieve superior mechanical properties; however, it remains less explored for functional materials. Beyond the random distribution of the constituents in HSMs, the ordering of constituents, e.g., grains, phases, and domain structures, can further enhance their coupling effect, thus leading to improved material properties or even transformative new functionalities. In this short perspective article, permanent magnetic materials are used as examples to review the recent progress in achieving enhanced properties and/or creating new physical mechanisms by building HSMs with ordered structures. This paper demonstrates that high-performance or revolutionary functional materials can be achieved by creating ordered HSMs.

Key words:  heterostructured material      ordered heterostructured material      functional material      functional unit      ordered microstructure     
Received:  01 June 2022     
ZTFLH:  TB34  
Fund: National Key Research and Development Program of China(2021YFB3500302);National Natural Science Foundation of China(51931007);National Natural Science Foundation of China(51971196);National Natural Science Foundation of China(52071279)
About author:  ZHANG Hai-Tian, professor, Tel: (010)82317132, E-mail: htzhang@buaa.edu.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00274     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1459

Fig.1  Schematics of typical heterostructured functional materials with ordered structures
(a) gradient ordered structure[12] (b) core-shell ordered structure[13] (c) layered ordered structure
Fig.2  Effects of atomic-scale ordered structure (composition gradient) on the magnetic properties of 2∶17-type SmCo heterostructured magnets
(a) coercivity of the magnet as a function of annealing time at 850oC (μ0—magnetic constant,iHc—intrinsic coercivity, t—annealing time)[17]
(b) EDX results of Cu concentration profile for samples before (sample A) and after (sample B) annealing for 5 min (The y-axis represents normalized atomic concentration of Cu)[17]
(c) 3D atom maps of Sm and Cu, and the composition profiles of constituent elements selected from the 1∶5 cell boundary phase[18] (d, e) simulation results of 6 different anisotropy constant gradients (d), and their corresponding effects on the depinning field (e) (K1—first anisotropy constant)[18]
Fig.3  TEM and high-resolution TEM (HRTEM) images of a nano-scale core-shell ordered structure which enables a good combination of high coercivity (Hc) and large remanence (Br) in NdFeB/α-Fe nanocomposite magnets[13]
(a) TEM (left) and HRTEM (right) images of the core-shell structure (d—interplanar spacing, FFT—fast Fourier transform)
(b) coercivity and remanence of the core-shell NdFeB/α-Fe nanocomposite magnets (marked with the red color) and the representative isotropic NdFeB/α-Fenanocomposites
Fig.4  Effect of nano-scale ordered structure with grain-size gradient on the magnetization reversal and enhanced properties of NdFeB/α-Fe nanocomposite magnets[12]
(a) TEM images along the grain-size gradient from the free side (FS) to the cooling side (CS) of melt-spun ribbons
(b) micromagnetic simulations of the directional magnetization reversal in the dual-gradients ordered structure (GHN-2) (H—applied reverse field)
(c) a rare combination of high coercivity and large remanence resulted from the directional magnetization reversal in the ordered nanocomposite magnets (Inset shows the schematics of ordered gradient nanostructures. HS—homogeneous structure, MS—spin melting, ANN—thermal annealed, HPTD—high pressure thermal deformation, GHN-1—single-gradient structure)
Fig.5  Effect of micro-scale layered ordered structure on magnetization process and improvement of the energy product of (FeCo + SmCo)/NdFeB nanocomposite magnets[19]
(a) TEM image and EDX mapping of the layered ordered structure
(b) random and ordered layered structures (the left panel) and their magnetization processes (the right panel), the layered ordered structure shows a multi-step pinning magnetization process (M—magnetization, Ms—saturation magnetization, Hin—intrinsic coercivity)
(c) ultrahigh energy product resulted from the multi-step pinning mechanism in the layered ordered nanocomposite magnets ((BH)max—maximum energy product, HSM—heterostructured material)
1 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
2 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
3 Zhang X Y. Heterostructures: New opportunities for functional materials [J]. Mater. Res. Lett., 2020, 8: 49
doi: 10.1080/21663831.2019.1691668
4 Li X Y, Lu L, Li J G, et al. Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys [J]. Nat. Rev. Mater., 2020, 5: 706
doi: 10.1038/s41578-020-0212-2
5 Li X Y, Lu K. Improving sustainability with simpler alloys [J]. Science, 2019, 364: 733
doi: 10.1126/science.aaw9905 pmid: 31123122
6 Li X H, Lou L, Song W P, et al. Novel bimorphological anisotropic bulk nanocomposite materials with high energy products [J]. Adv. Mater., 2017, 29: 1606430
doi: 10.1002/adma.201606430
7 Biswas K, He J Q, Blum I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures [J]. Nature, 2012, 489: 414
doi: 10.1038/nature11439
8 Shen K, Zhang L, Chen X D, et al. Ordered macro-microporous metal-organic framework single crystals [J]. Science, 2018, 359: 206
doi: 10.1126/science.aao3403 pmid: 29326271
9 Zhang H T, Zhang X Y. Strong magnets with ordered structures [J]. Mater. Res. Lett., 2022, 10: 1
doi: 10.1080/21663831.2021.2008541
10 Zhang H T, Park T J, Islam A N M N, et al. Reconfigurable perovskite nickelate electronics for artificial intelligence [J]. Science, 2022, 375: 533
doi: 10.1126/science.abj7943
11 National Science Foundation of China. 2019 annual project guide for the major research program for basic research of high-performance materials with ordered functional primitive structure[EB/OL]. (2019-08-16).
国家自然科学基金委员会. 功能基元序构的高性能材料基础研究重大研究计划2019年度项目指南 [EB/OL]. (2019-08-16).
12 Lou L, Li Y Q, Li X H, et al. Directional magnetization reversal enables ultrahigh energy density in gradient nanostructures [J]. Adv. Mater., 2021, 33: 2102800
doi: 10.1002/adma.202102800
13 Li H L, Li X H, Guo D F, et al. Three-dimensional self-assembly of core/shell-like nanostructures for high-performance nanocomposite permanent magnets [J]. Nano Lett., 2016, 16: 5631
doi: 10.1021/acs.nanolett.6b02210 pmid: 27570896
14 Sellmyer D J. Strong magnets by self-assembly [J]. Nature, 2002, 420: 374
doi: 10.1038/420374a
15 Jones N. Materials science: The pull of stronger magnets [J]. Nature, 2011, 472: 22
doi: 10.1038/472022a
16 Li X H, Lou L, Song W P, et al. Controllably manipulating three-dimensional hybrid nanostructures for bulk nanocomposites with large energy products [J]. Nano Lett., 2017, 17: 2985
doi: 10.1021/acs.nanolett.7b00264 pmid: 28402670
17 Yan A, Gutfleisch O, Gemming T, et al. Microchemistry and magnetization reversal mechanism in melt-spun 2∶17-type Sm-Co magnets [J]. Appl. Phys. Lett., 2003, 83: 2208
doi: 10.1063/1.1611641
18 Sepehri-Amin H, Thielsch J, Fischbacher J, et al. Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets [J]. Acta Mater., 2017, 126: 1
doi: 10.1016/j.actamat.2016.12.050
19 Huang G W, Li X H, Lou L, et al. Engineering bulk, layered, multicomponent nanostructures with high energy density [J]. Small, 2018, 14: 1800619
doi: 10.1002/smll.201800619
20 Coey J M D. Perspective and prospects for rare earth permanent magnets [J]. Engineering, 2020, 6: 119
doi: 10.1016/j.eng.2018.11.034
21 Roychowdhury S, Ghosh T, Arora R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2 [J]. Science, 2021, 371: 722
doi: 10.1126/science.abb3517 pmid: 33574210
22 Chen Q X, Liu Y H, Qi X Z, et al. Ordered nanostructure enhances electrocatalytic performance by directional micro-electric field [J]. J. Am. Chem. Soc., 2019, 141: 10729
doi: 10.1021/jacs.9b03617
23 Li J Z, Sharma N, Jiang Z S, et al. Dynamics of particle network in composite battery cathodes [J]. Science, 2022, 376: 517
doi: 10.1126/science.abm8962 pmid: 35482882
24 Begley M R, Gianola D S, Ray T R. Bridging functional nanocomposites to robust macroscale devices [J]. Science, 2019, 364: eaav4299
doi: 10.1126/science.aav4299
25 Snyder G J, Toberer E S. Complex thermoelectric materials [J]. Nat. Mater., 2008, 7: 105
doi: 10.1038/nmat2090 pmid: 18219332
26 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
[1] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] Qiang WANG, Meng DONG, Jinmei SUN, Tie LIU, Yi YUAN. Control of Solidification Process and Fabrication of Functional Materials with High Magnetic Fields[J]. 金属学报, 2018, 54(5): 742-756.
No Suggested Reading articles found!