Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1427-1440    DOI: 10.11900/0412.1961.2022.00317
Overview Current Issue | Archive | Adv Search |
Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain
FAN Guohua1, MIAO Kesong1(), LI Danyang2, XIA Yiping3, WU Hao1
1.Key Laboratory for Light-weight Materials, ‎Nanjing Tech University, Nanjing 211816, China
2.Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, China
3.School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain. Acta Metall Sin, 2022, 58(11): 1427-1440.

Download:  HTML  PDF(3895KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The concurrent enhancement of strength and ductility is an unremitting pursuit in metallic material research. Recently, by deliberately controlling the spatial distribution of domains with substantially different mechanical properties, heterostructured architecture has overcome the limitation of strength-ductility synergy in metallic materials. Mainstream theories, such as hetero-deformation-induced hardening, strain partition, premature local necking delay, and interface affected zone, have provided crucial guidance for the designing of preferable heterostructured metallic materials. These theories suggest that the domains of heterostructured metallic materials present unique local stress and strain characteristics upon loading, accompanying deformation and fracture behaviors that deviate from the predictions of classical theories. In this study, the evolutions of local stress and strain during the early deformation, plastic deformation, and fracture stages of heterostructured metallic materials were reviewed. Moreover, interactions between deformation or fracture behaviors and local stress or strain as well as their effects on mechanical properties are summarized, presenting a new perspective for designing and developing high-performance heterostructured metallic materials.

Key words:  heterostructured architecture      local stress      local strain      deformation behavior      fracture behavior     
Received:  27 June 2022     
ZTFLH:  TB31  
Fund: National Key Research and Development Program of China(2020YFA0405900);National Natural Science Foundation of China(51927801);National Natural Science Foundation of China(52171117);Natural Science Foundation of Jiangsu Province(BK20202010);Basic Science Research Project for Higher Education Institutions of Jiangsu Province(22KJB430027)
About author:  MIAO Kesong, Tel: (025)83589102, E-mail: miaokesong@njtech.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00317     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1427

Fig.1  Typical heterostructured architectures and their effects on strength and ductility synergy
(a, b) gradient heterostructure (FG and CG are referred to fine grain and coarse grain, respectively)[19] (c, d) layered heterostructure (TD—transverse direction)[15] (e, f) harmonic heterostructure[16]
Fig.2  The multi-stages of deformation in heterostructured metallic materials
(a) three deformation stages of heterostructured metallic materials[9]
(b) lattice strain evolution of Ti/Al layered heterostructured materials measured by neutron diffraction[24]
Fig.3  The strengthening mechanism of heterostructured metallic materials[9]
(a) pile-ups of geometrically necessary dislocations (GNDs)
(b) strain and strain gradient versus distance from the domain interface
(c) local stress versus distance from the domain interface
Fig.4  The evolution of lattice strain for grain A in layered heterostructured pure titanium with alternating coarse- and fine-grain layers[40] (φ1—Euler angle)
(a) εxx, the strain component along normal direction (ND, x axis)
(b) εyy, the strain component along rolling direction (RD, y axis)
(c) εzz, the strain component perpendicular to ND and RD (z axis)
(d) εxy, the shear strain component in the x-y plane
(e) εyz, the shear strain component in the y-z plane
(f) Euler angle map of grain A
(g) orientation schematic diagram of grain A
Fig.5  The microstructures and properties of Cu/Nb layered heterostructured material with 3D interface[42,43]
(a) a high density of dislocations at 3D interface[42]
(b) stress-strain plots for micropillar compression[42] (ε˙—strain rate) (c, d) microstructures[42] (e, f) TEM images (PVD—physical vapor deposition, ARB—accumulative roll bonding)[42] (g, h) HRTEM images[43] (i, j) schematic diagrams of dislocation behaviors[43]
Fig.6  Analyses of deformation mechanism in Al/Al layered heterostructured materials by synchrotron radiation polychromatic X-ray Laue microdiffraction[15]
(a) inverse pole figure map (b, c) Laue patterns taken from the red and blue points marked in Fig.6a (d) simulations of Laue peak streaking directions corresponding to all the 12 possible slip systems (a'—lattice constant, SF—Schmid factor)
Fig.7  Delocalization of shear bands achieved by gradient heterostructure[58,59]
(a) contour maps of axial strain on nanostructured surface (X, Y, and Z are referred to transverse direction, loading direction, and normal direction, respectively)[58]
(b) contour maps of axial strain on freestanding nanostructured surface (εy —strain component along loading direction)[59]
(c) contour maps of axial strain on nanostructured surface supported by gradient heterostructured substrate[59]
Fig.8  Cases of heterostructures in nature and applications
(a) shell[68] (b) bone[71]
(c) microstructure and mechanical properties of ultrastrong dual-phase steel (σy—yield strength, σyu—upper yield strength, σyl—lower yield strength, σuts—ultimate tensile strength, εu—uniform elongation, εf—fracture elongation, G—gauge length, σ0—effective yield strength, KJIC—crack-initiation fracture toughness, Kss—crack-growth toughness, E'—effective modulus, JIC—size-independent fracture toughness, Δamax—maximum length for stable crack extension, B—specimen thickness, W—specimen width, a—crack length)[74]
(d) microstructure and fatigue properties of bone-like heterostructured steel (R—stress ratio)[73]
Fig.9  Fracture analyses of TiBw/Ti-Ti(Al) layered heterostructured materials[14]
(a) microstructure (b) comparisons of tensile properties (c, d) effect of layered heterostructure on crack driving force and crack resistance (Jhom—crack-tip driving force for homogeneous structure, Jhet—crack-tip driving force for heterogeneous structure, Rhom—resistance to crack propagation for homogeneous structure, Rhet—resistance to crack propagation for heterogeneous structure, ahom—half of critical crack length for homogeneous structure, ahet—half of critical crack length for heterogeneous structure, r—affected zone size of heterogeneous interface) (e) schematic diagram of the effect of layered heterostructure on the plastic zone at the microcrack tip (rp—plastic zone size at the microcrack tip)
1 Lu K. The future of metals [J]. Science, 2010, 328: 319
doi: 10.1126/science.1185866 pmid: 20395503
2 Fu Z Q, MacDonald B E, Zhang D L, et al. Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity [J]. Scr. Mater., 2018, 143: 108
doi: 10.1016/j.scriptamat.2017.09.023
3 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
4 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
doi: 10.1038/nmat3544 pmid: 23353630
5 Gao H J, Ji B H, Jäger I L, et al. Materials become insensitive to flaws at nanoscale: Lessons from nature [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 5597
doi: 10.1073/pnas.0631609100
6 Suresh S. Graded materials for resistance to contact deformation and damage [J]. Science, 2001, 292: 2447
pmid: 11431558
7 Wu X L, Zhu Y T. Gradient and lamellar heterostructures for superior mechanical properties [J]. MRS Bull., 2021, 46: 244
8 Zhu Y T. Introduction to heterostructured materials: A fast emerging field [J]. Metall. Mater. Trans., 2021, 52A: 4715
9 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
10 Wang G, Ouyang H, Su Y S, et al. Heterostructured bulk aluminum with controllable gradient structure: Fabrication strategy and deformation mechanisms [J]. Scr. Mater., 2021, 196: 113762
doi: 10.1016/j.scriptamat.2021.113762
11 Yuan S Q, Gan B, Qian L, et al. Gradient nanotwinned CrCoNi medium-entropy alloy with strength-ductility synergy [J]. Scr. Mater., 2021, 203: 114117
doi: 10.1016/j.scriptamat.2021.114117
12 Cheng Z, Bu L F, Zhang Y, et al. Unraveling the origin of extra strengthening in gradient nanotwinned metals [J]. Proc. Natl. Acad. Sci. USA, 2022, 119: e2116808119
doi: 10.1073/pnas.2116808119
13 Dong S J, Chen T J, Huang S X, et al. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites [J]. Scr. Mater., 2020, 187: 323
doi: 10.1016/j.scriptamat.2020.06.049
14 Wu H, Huang M, Li X W, et al. Temperature-dependent reversed fracture behavior of multilayered TiBw/Ti-Ti(Al) composites [J]. Int. J. Plast., 2021, 141: 102998
doi: 10.1016/j.ijplas.2021.102998
15 Xia Y P, Miao K S, Wu H, et al. Superior strength-ductility synergy of layered aluminum under uniaxial tensile loading: The roles of local stress state and local strain state [J]. Int. J. Plast., 2022, 152: 103240
doi: 10.1016/j.ijplas.2022.103240
16 Vajpai S K, Ota M, Zhang Z, et al. Three-dimensionally gradient harmonic structure design: An integrated approach for high performance structural materials [J]. Mater. Res. Lett., 2016, 4: 191
doi: 10.1080/21663831.2016.1218965
17 Park H K, Ameyama K, Yoo J, et al. Additional hardening in harmonic structured materials by strain partitioning and back stress [J]. Mater. Res. Lett., 2018, 6: 261
doi: 10.1080/21663831.2018.1439115
18 Peng H X, Fan Z, Evans J R G. Bi-continuous metal matrix composites [J]. Mater. Sci. Eng., 2001, A303: 37
19 Lu K. Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
doi: 10.1126/science.1255940 pmid: 25237091
20 Yang M X, Li R G, Jiang P, et al. Residual stress provides significant strengthening and ductility in gradient structured materials [J]. Mater. Res. Lett., 2019, 7: 433
doi: 10.1080/21663831.2019.1635537
21 Long J Z, Pan Q S, Tao N R, et al. Residual stress induced tension-compression asymmetry of gradient nanograined copper [J]. Mater. Res. Lett., 2018, 6: 456
doi: 10.1080/21663831.2018.1478898
22 Antolovich S D, Armstrong R W. Plastic strain localization in metals: Origins and consequences [J]. Prog. Mater. Sci., 2014, 59: 1
doi: 10.1016/j.pmatsci.2013.06.001
23 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
doi: 10.1016/j.pmatsci.2020.100675
24 Huang M, Xu C, Fan G H, et al. Role of layered structure in ductility improvement of layered Ti-Al metal composite [J]. Acta Mater., 2018, 153: 235
doi: 10.1016/j.actamat.2018.05.005
25 Wang Y F, Huang C X, Fang X T, et al. Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient [J]. Scr. Mater., 2020, 174: 19
doi: 10.1016/j.scriptamat.2019.08.022
26 Zhu Y T, Wu X L. Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
doi: 10.1080/21663831.2019.1616331
27 Frint P, Wagner M F X. Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy [J]. Acta Mater., 2019, 176: 306
doi: 10.1016/j.actamat.2019.07.009
28 Liu H S, Zhang B, Zhang G P. Delaying premature local necking of high-strength Cu: A potential way to enhance plasticity [J]. Scr. Mater., 2011, 64: 13
doi: 10.1016/j.scriptamat.2010.08.049
29 Liang F, Tan H F, Zhang B, et al. Maximizing necking-delayed fracture of sandwich-structured Ni/Cu/Ni composites [J]. Scr. Mater., 2017, 134: 28
doi: 10.1016/j.scriptamat.2017.02.032
30 Huang C X, Wang Y F, Ma X L, et al. Interface affected zone for optimal strength and ductility in heterogeneous laminate [J]. Mater. Today, 2018, 21: 713
doi: 10.1016/j.mattod.2018.03.006
31 Spitzig W A. Effect of hydrostatic pressure on plastic-flow properties of iron single crystals [J]. Acta Metall., 1979, 27: 523
doi: 10.1016/0001-6160(79)90004-X
32 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
doi: 10.1038/s41586-020-2036-z
33 Zhang X X, Ni D R, Xiao B L, et al. Determination of macroscopic and microscopic residual stresses in friction stir welded metal matrix composites via neutron diffraction [J]. Acta Mater., 2015, 87: 161
doi: 10.1016/j.actamat.2015.01.006
34 Ma X L, Huang C X, Moering J, et al. Mechanical properties of copper/bronze laminates: Role of interfaces [J]. Acta Mater., 2016, 116: 43
doi: 10.1016/j.actamat.2016.06.023
35 Fang X T, He G Z, Zheng C, et al. Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass [J]. Acta Mater., 2020, 186: 644
doi: 10.1016/j.actamat.2020.01.037
36 Zhou H, Huang C X, Sha X C, et al. In-situ observation of dislocation dynamics near heterostructured interfaces [J]. Mater. Res. Lett., 2019, 7: 376
doi: 10.1080/21663831.2019.1616330
37 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
38 Wu X L, Zhu Y T, Lu K. Ductility and strain hardening in gradient and lamellar structured materials [J]. Scr. Mater., 2020, 186: 321
doi: 10.1016/j.scriptamat.2020.05.025
39 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
40 Li D Y, Fan G H, Huang X X, et al. Enhanced strength in pure Ti via design of alternating coarse- and fine-grain layers [J]. Acta Mater., 2021, 206: 116627
doi: 10.1016/j.actamat.2021.116627
41 Mánik T, Holmedal B. Review of the Taylor ambiguity and the relationship between rate-independent and rate-dependent full-constraints Taylor models [J]. Int. J. Plast., 2014, 55: 152
doi: 10.1016/j.ijplas.2013.10.002
42 Chen Y, Li N, Hoagland R G, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers [J]. Acta Mater., 2020, 199: 593
doi: 10.1016/j.actamat.2020.08.019
43 Zheng S J, Wang J, Carpenter J S, et al. Plastic instability mechanisms in bimetallic nanolayered composites [J]. Acta Mater., 2014, 79: 282
doi: 10.1016/j.actamat.2014.07.017
44 Jiang S, Peng R L, Hegedűs Z, et al. Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation [J]. Acta Mater., 2021, 205: 116546
doi: 10.1016/j.actamat.2020.116546
45 Yu T B, Du Y, Fan G H, et al. In-situ synchrotron X-ray micro-diffraction investigation of ultra-low-strain deformation microstructure in laminated Ti-Al composites [J]. Acta Mater., 2021, 202: 149
doi: 10.1016/j.actamat.2020.10.050
46 Wu X L, Jiang P, Chen L, et al. Extraordinary strain hardening by gradient structure [J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 7197
doi: 10.1073/pnas.1324069111
47 Wu X L, Jiang P, Chen L, et al. Synergetic strengthening by gradient structure [J]. Mater. Res. Lett., 2014, 2: 185
doi: 10.1080/21663831.2014.935821
48 Cheng Z, Zhou H F, Lu Q H, et al. Extra strengthening and work hardening in gradient nanotwinned metals [J]. Science, 2018, 362: eaau1925
doi: 10.1126/science.aau1925
49 Cornelius T W, Thomas O. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales [J]. Prog. Mater. Sci., 2018, 94: 384
doi: 10.1016/j.pmatsci.2018.01.004
50 Miao K S, Huang M, Xia Y P, et al. Unexpected de-twinning of strongly-textured Ti mediated by local stress [J]. J. Mater. Sci. Technol., 2022, 125: 231
doi: 10.1016/j.jmst.2022.02.039
51 Wang Y M, Chen M W, Zhou F H, et al. High tensile ductility in a nanostructured metal [J]. Nature, 2002, 419: 912
doi: 10.1038/nature01133
52 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
53 Huang M, Fan G H, Geng L, et al. Revealing extraordinary tensile plasticity in layered Ti-Al metal composite [J]. Sci. Rep., 2016, 6: 38461
doi: 10.1038/srep38461 pmid: 27917923
54 Miao K S, Li D Y, Tang G Z, et al. High elongation achieved by band-like distribution of reinforcements in aluminum matrix composites [J]. Mater. Charact., 2018, 144: 42
doi: 10.1016/j.matchar.2018.06.031
55 Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
56 Fan G H, Geng L, Wu H, et al. Improving the tensile ductility of metal matrix composites by laminated structure: A coupled X-ray tomography and digital image correlation study [J]. Scr. Mater., 2017, 135: 63
doi: 10.1016/j.scriptamat.2017.03.030
57 Wu H, Huang M, Li Q G, et al. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy [J]. Scr. Mater., 2019, 172: 165
doi: 10.1016/j.scriptamat.2019.07.034
58 Yuan F P, Yan D S, Sun J D, et al. Ductility by shear band delocalization in the nano-layer of gradient structure [J]. Mater. Res. Lett., 2019, 7: 12
doi: 10.1080/21663831.2018.1546238
59 Wang Y F, Wei Y G, Zhao Z F, et al. Activating dispersed strain bands in tensioned nanostructure layer for high ductility: The effects of microstructure inhomogeneity [J]. Int. J. Plast., 2022, 149: 103159
doi: 10.1016/j.ijplas.2021.103159
60 Wang Y F, Huang C X, He Q, et al. Heterostructure induced dispersive shear bands in heterostructured Cu [J]. Scr. Mater., 2019, 170: 76
doi: 10.1016/j.scriptamat.2019.05.036
61 Wang Y F, Wei Y G, Zhao Z F, et al. Mechanical response of the constrained nanostructured layer in heterogeneous laminate [J]. Scr. Mater., 2022, 207: 114310
doi: 10.1016/j.scriptamat.2021.114310
62 Wang Y F, Huang C X, Li Z K, et al. Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint [J]. Extreme Mech. Lett., 2020, 37: 100686
doi: 10.1016/j.eml.2020.100686
63 Wang Y F, Huang C X, Li Y S, et al. Dense dispersed shear bands in gradient-structured Ni [J]. Int. J. Plast., 2020, 124: 186
doi: 10.1016/j.ijplas.2019.08.012
64 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10: 817
doi: 10.1038/nmat3115 pmid: 22020005
65 Riesch J, Buffiere J Y, Höschen T, et al. In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system [J]. Acta Mater., 2013, 61: 7060
doi: 10.1016/j.actamat.2013.07.035
66 Faber K T, Evans A G. Intergranular crack-deflection toughening in silicon carbide [J]. J. Am. Ceram. Soc., 1983, 66: C-94
67 Meyers M A, Lin A Y M, Chen P Y, et al. Mechanical strength of abalone nacre: Role of the soft organic layer [J]. J. Mech. Behav. Biomed. Mater., 2008, 1: 76
doi: 10.1016/j.jmbbm.2007.03.001 pmid: 19627773
68 Zhang M Y, Zhao N, Yu Q, et al. On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures [J]. Nat. Commun., 2022, 13: 3247
doi: 10.1038/s41467-022-30873-9 pmid: 35668100
69 Lawn B R, Lee J J W, Chai H. Teeth: Among nature's most durable biocomposites [J]. Annu. Rev. Mater. Res., 2010, 40: 55
doi: 10.1146/annurev-matsci-070909-104537
70 Koester K J, Ager III J W, Ritchie R O. The true toughness of human cortical bone measured with realistically short cracks [J]. Nat. Mater., 2008, 7: 672
doi: 10.1038/nmat2221 pmid: 18587403
71 Stevens M M, George J H. Exploring and engineering the cell surface interface [J]. Science, 2005, 310: 1135
pmid: 16293749
72 Abid N, Mirkhalaf M, Barthelat F. Discrete-element modeling of nacre-like materials: Effects of random microstructures on strain localization and mechanical performance [J]. J. Mech. Phys. Solids, 2018, 112: 385
doi: 10.1016/j.jmps.2017.11.003
73 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
doi: 10.1126/science.aal2766 pmid: 28280201
74 Liu L, Yu Q, Wang Z, et al. Making ultrastrong steel tough by grain-boundary delamination [J]. Science, 2020, 368: 1347
doi: 10.1126/science.aba9413 pmid: 32381592
75 Shi P J, Zhong Y B, Li Y, et al. Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys [J]. Mater. Today, 2020, 41: 62
doi: 10.1016/j.mattod.2020.09.029
76 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
77 Buehler M J, Gao H J. Dynamical fracture instabilities due to local hyperelasticity at crack tips [J]. Nature, 2006, 439: 307
doi: 10.1038/nature04408
78 Wu H, Fan G H, Huang M, et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect [J]. Int. J. Plast., 2017, 89: 96
doi: 10.1016/j.ijplas.2016.11.005
79 Berbenni S, Favier V, Berveiller M. Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials [J]. Comput. Mater. Sci., 2007, 39: 96
doi: 10.1016/j.commatsci.2006.02.019
80 Liang F, Wang Z X, Luo Y W, et al. Enhancing co-deformation ability of nanograined Ni-W layers in the Ni/Ni-W laminated composites [J]. Acta Mater., 2021, 216: 117138
doi: 10.1016/j.actamat.2021.117138
81 Cao R Q, Yu Q, Pan J, et al. On the exceptional damage-tolerance of gradient metallic materials [J]. Mater. Today, 2020, 32: 94
doi: 10.1016/j.mattod.2019.09.023
82 Shiota H, Tokaji K, Ohta Y. Influence of lamellar orientation on fatigue crack propagation behavior in titanium aluminide TiAl [J]. Mater. Sci. Eng., 1998, A243: 169
83 Liu W H, Zhang L W, Liew K M. Modeling of crack bridging and failure in heterogeneous composite materials: A damage-plastic multiphase model [J]. J. Mech. Phys. Solids, 2020, 143: 104072
doi: 10.1016/j.jmps.2020.104072
84 Ovid'ko I A, Sheinerman A G. Plastic deformation and fracture processes in metallic and ceramic nanomaterials with bimodal structures [J]. Rev. Adv. Mater. Sci., 2007, 16: 1
85 Xia S H, Wang J T. A micromechanical model of toughening behavior in the dual-phase composite [J]. Int. J. Plast., 2010, 26: 1442
doi: 10.1016/j.ijplas.2010.01.005
86 Liu H, Zhang H W. A uniform multiscale method for 3D static and dynamic analyses of heterogeneous materials [J]. Comput. Mater. Sci., 2013, 79: 159
doi: 10.1016/j.commatsci.2013.06.006
87 Lyu H, Ruimi A, Field D P, et al. Plasticity in materials with heterogeneous microstructures [J]. Metall. Mater. Trans., 2016, 47A: 6608
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[3] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[4] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[6] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[7] Zhaoping LU, Zhifeng LEI, Hailong HUANG, Shaofei LIU, Fan ZHANG, Dabo DUAN, Peipei CAO, Yuan WU, Xiongjun LIU, Hui WANG. Deformation Behavior and Toughening of High-Entropy Alloys[J]. 金属学报, 2018, 54(11): 1553-1566.
[8] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
[9] Xiangli FENG,Lei WANG,Yang LIU. STUDY ON MICROSTRUCTURE AND DYNAMIC FRACTURE BEHAVIOR OF Q460 STEEL WELDING JOINTS[J]. 金属学报, 2016, 52(7): 787-796.
[10] LIU Yongkang, HUANG Haiyou, XIE Jianxin. ANISOTROPIC DEFORMATION BEHAVIOR OF CONTINUOUS COLUMNAR-GRAINED CuNi10Fe1Mn ALLOY[J]. 金属学报, 2015, 51(1): 40-48.
[11] ZHANG Jinyu, LIU Gang, SUN Jun. SIZE EFFECTS ON DEFORMATION AND FRACTURE BEHAVIOR OF NANOSTRUCTURED METALLIC MULTILAYERS[J]. 金属学报, 2014, 50(2): 169-182.
[12] HUANG Hongtao, Godfrey Andrew, LIU Wei, FU Baoqin,LIU Qing. DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY DURING MULTIAXIAL COMPRESSION BY EBSD TRACKING[J]. 金属学报, 2013, 49(8): 932-938.
[13] DONG Danyang, LIU Yang, WANG Lei, SU Liangjin. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF DP780 STEEL[J]. 金属学报, 2013, 49(2): 159-166.
[14] DONG Danyang, LIU Yang, WANG Lei, YANG Yuling, LI Jinfeng, JIN Mengmeng. EFFECT OF STRAIN RATE ON DYNAMIC DEFORMATION BEHAVIOR OF LASER WELDED DP780 STEEL JOINTS[J]. 金属学报, 2013, 49(12): 1493-1500.
[15] LIU Yang WANG Lei HE Sisi FENG Fei LV Xudong ZHANG Beijiang. EFFECT OF LONG-TERM AGING ON DYNAMIC TENSILE DEFORMATION BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2012, 48(1): 49-55.
No Suggested Reading articles found!