Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting
HOU Juan1,2(), DAI Binbin2, MIN Shiling2, LIU Hui2, JIANG Menglei2, YANG Fan2
1State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China 2Academy of Materials and Chemistry, University of Shanghai Science and Technology, Shanghai 200082, China
Cite this article:
HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting. Acta Metall Sin, 2023, 59(5): 623-635.
As one of the most promising metal additive manufacturing methods, selective laser melting (SLM) is very attractive for fabricating complex-shaped structure components of austenitic stainless steels in the nuclear field. SLMed austenitic 304L stainless steel has been demonstrated to have excellent mechanical properties and superior corrosion resistance due to the unique hierarchical microstructure produced by the ultrafast cooling rate and high-thermal gradient. Scanning tracks (T) and depositing layers (L) are key factors for geometry design by affecting the processing efficiency and the solidification structure of the components. Hence, it is essential to clarify the effecting mechanism of sample size and geometry on material performance. In this work, samples of different sizes are designed to study the influence of geometry on the microstructure and mechanical properties of 304L stainless steel components made via SLM. Various solidification conditions are achieved by varying the temperature gradients and cooling rates by adjusting T and L. Metallographic microscopic observations in samples with various T × L combinations demonstrate that a columnar structure is formed along the build direction, which is significantly impacted by the geometry effect. The columnar grains grow preferentially along the heat dissipation direction with an increase in the sample size. The columnar grains gradually change from having a low length-diameter ratio (LDR) with a rice grain shape to a higher LDR with a short rod-like shape and then a long strip shape. Grain coarsening could also be identified along with the formation of “long strip” columnar grains. Moreover, consistent microstructure evolution behavior is observed in large-sized samples. The influence of geometry on the mechanical properties is examined via tensile testing to demonstrate the decrease in yield strength and increased plastic elongation with the rise in sample size. As the sample size increases, the mechanical properties become consistent. The comprehensive analysis concludes that grain size and columnar grains play critical roles in determining the mechanical properties according to the Hall-Petch relationship. In larger-sized samples, “long strip” columnar grains with a high proportion could lead to a decrease in material strength and an increase in plasticity. The geometry mechanism affecting the solidification process, microstructure formation, and mechanical properties of 304L stainless steel processed by SLM is explored by combining the solidification rate and thermal gradient simulation results using ANSYS ADDITIVE.
Fund: National Natural Science Foundation of China(52073176);Shenzhen International Cooperation Research Science and Technology Program(GJHZ20200731095203011);State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment Opening Project(CSO-102-001)
Fig.1 Morphology of the gas-atomized powders-304L for selective laser melting (SLM) (a) and schematic of printing composing (b) (T represents scanning track, L represents depositing layer)
Sample
C
N
P
S
Cr
Cu
Mn
Ni
O
Si
Mo
Fe
Powder
0.006
0.013
0.027
0.001
18.95
0.033
0.016
9.48
0.029
0.056
0.87
Bal.
SLMed
0.015
0.013
0.027
0.003
19.70
0.032
0.054
9.62
0.031
0.065
0.83
Bal.
Table 1 Chemical compositions of 304L stainless steel powder and SLM 304L stainless steel
L
T
1
2
20
100
200
300
5
T1-L5
T2-L5
-
-
-
-
10
-
-
T20-L10
-
-
T300-L10
100
-
-
T20-L100
T100-L100
T200-L100
T300-L100
500
-
-
T20-L500
T100-L500
T200-L500
T300-L500
700
-
-
T20-L700
T100-L700
T200-L700
T300-L700
1000
-
-
T20-L1000
T100-L1000
T200-L1000
T300-L1000
Table 2 Abbreviations of different dimensional samples
Fig.2 Scanning strategies of rotation angle of 67° between adjacent layers (a) and “skywriting” scan mode along the set scanning path (b)
Fig.3 Tensile test specimen (unit: mm) (a) and schematic of SLM (b)
Fig.4 Low (a, c) and high (b, d) magnified OM images of SLM 304L ‘fish scale’ morphology (a) and columnar grains (b) with melt pool boundary on longitudinal plane, and laser exposure traces (c) and equiaxed grains (d) on horizontal plane
Fig.5 OM images of SLM 304L stainless steel samples with different T × L sizes along the building direction (a) T1-L5 (b) T2-L5 (c) T20-L10 (d) T20-L100 (e) T20-L700 (f) T20-L1000
Fig.6 OM images of microstructures of T100 series samples in SLM 304L stainless steel (a) T100-L100 (b) T100-L500 (c) T100-700 (d) T100-L1000
Sample
Grain size / μm
Rice-shaped columnar
Narrow-short columnar
Strip columnar
(0-50 μm2) / %
(51-150 μm2) / %
(≥ 151 μm2) / %
T100-L100
13 ± 2
25.2
50.7
24.1
T100-L500
16 ± 2
21.3
45.6
33.1
T100-L700
18 ± 1
18.7
42.3
38.0
T100-L1000
20 ± 2
17.6
45.0
47.4
Table 3 Statistical results of grain size and columnar crystal morphology of T100 series samples
Fig.7 OM images of microstructures of T200 series samples in SLM 304L stainless steel (a) T200-L100 (b) T200-L500 (c) T200-700 (d) T200-L1000
Sample
Grain size / μm
Rice-shaped columnar
Narrow-short columna
Strip columnar
(0-50 μm2) / %
(51-150 μm2) / %
(≥ 151 μm2) / %
T200-L100
15 ± 2
20.9
46.2
32.9
T200-L500
19 ± 2
18.7
44.3
37.0
T200-L700
20 ± 2
17.3
45.1
37.6
T200-L1000
22 ± 1
16.1
42.4
41.5
Table 4 Statistical results of grain size and columnar crystal morphology of T200 series samples
Fig.8 OM images of microstructures of T300 series samples in SLM 304L stainless steel (a) T300-L100 (b) T300-L500 (c) T300-700 (d) T300-L1000
Sample
Grain size / μm
Rice-shaped columnar
Narrow-short columnar
Strip columnar
(0-50 μm2) / %
(51-150 μm2) / %
(≥ 151 μm2) / %
T300-L100
18 ± 2
12.0
37.0
51.0
T300-L500
20 ± 2
11.7
32.0
56.3
T300-L700
23 ± 2
10.5
30.0
59.5
T300-L1000
25 ± 1
9.7
23.1
67.2
Table 5 Statistical results of grain size and columnar crystal morphology of T300 series samples
Fig.9 XRD spectra of T100 (a), T200 (b), and T300 (c) series samples with different sizes
Fig.10 Phase distribution images by EBSD in SLM 304L stainless steel of T300-L100 (a) and T300-L1000 (b) Color online
Fig.11 Stress-strain curves of L100 (a), T100 (b), T200 (c), and T300 (d) series samples
Sample
Yield strength
Ultimate tensile
Elongation
MPa
strength / MPa
%
T100-L100
541.5 ± 17
691.6 ± 14
52.7 ± 0.6
T100-L500
478.7 ± 13
667.0 ± 16
61.0 ± 0.2
T100-L700
475.7 ± 15
654.7 ± 20
60.1 ± 0.9
T100-L1000
477.8 ± 9
665.9 ± 23
66.6 ± 0.3
T200-L100
504.6 ± 15
682.8 ± 17
54.9 ± 0.7
T200-L500
476.6 ± 8
656.1 ± 19
59.9 ± 0.9
T200-L700
470.2 ± 11
649.1 ± 22
63.3 ± 0.4
T200-L1000
464.2 ± 15
646.3 ± 14
67.0 ± 0.5
T300-L100
486.8 ± 13
674.6 ± 24
56.6 ± 0.8
T300-L500
470.9 ± 18
669.2 ± 18
59.3 ± 0.9
T300-L700
472.9 ± 8
667.8 ± 16
63.0 ± 1.0
T300-L1000
459.8 ± 12
662.7 ± 16
63.1 ± 1.2
Table 6 Strengthes and ductilities of SLM 304L samples with different sizes
X
Y
Z
G
R
G × R
G / R
mm
mm
mm
K·m-1
m·s-1
K·s-1
K·s·m-2
5
1
1
5116897
0.3075
1573810
16640315
5
1
2
5143065
0.3010
1548151
17086594
5
1
5
4789272
0.3078
1474094
15559688
Table 7 Simulation results of solidification rate (R) and temperature gradient (G) in SLM process
Fig.12 Schematics showing the change of columnar crystal morphology and proportion with the different build geometries (a) T100-L100 (b) T200-L100 (c) T300-L1000
1
Das S, Wohlert M, Beaman J J, et al. Processing of titanium net shapes by SLS/HIP[J]. Mater. Des., 1999, 20: 115
doi: 10.1016/S0261-3069(99)00017-5
2
Leuders S, Thöne M, Riemer A, et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. Int. J. Fatigue, 2013, 48: 300
doi: 10.1016/j.ijfatigue.2012.11.011
3
Ni M, Chen C, Wang X J, et al. Anisotropic tensile behavior of in situ precipitation strengthened Inconel 718 fabricated by additive manufacturing[J]. Mater. Sci. Eng., 2017, A701: 344
4
Mordike B L, Ebert T. Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
5
Witte F. The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
doi: 10.1016/j.actbio.2010.02.028
pmid: 20172057
6
Shuai C J, Yang Y W, Wu P, et al. Laser rapid solidification improves corrosion behavior of Mg-Zn-Zr alloy[J]. J. Alloys Compd., 2017, 691: 961
doi: 10.1016/j.jallcom.2016.09.019
7
Anderson S, Baca G, O'Connor M. NEET-AMM final technical report on laser direct manufacturing (LDM) for nuclear power components[R]. United States: n. p., 2015. doi:10.2172/1233481
8
Li P F, Gong Y D, Xu Y C, et al. Inconel-steel functionally bimetal materials by hybrid directed energy deposition and thermal milling: Microstructure and mechanical properties[J]. Arch. Civ. Mech. Eng., 2019, 19: 820
doi: 10.1016/j.acme.2019.03.002
9
Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nat. Mater., 2018, 17: 63
doi: 10.1038/nmat5021
pmid: 29115290
10
Trevisan F, Calignano F, Aversa A, et al. Additive manufacturing of titanium alloys in the biomedical field: Processes, properties and applications[J]. J. Appl. Biomater. Funct. Mater., 2018, 16: 57
11
Hou J, Chen W, Chen Z E, et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel[J]. J. Mater. Sci. Technol., 2020, 48: 63
doi: 10.1016/j.jmst.2020.01.011
12
Cordero Z C, Meyer III H M, Nandwana P, et al. Powder bed charging during electron-beam additive manufacturing[J]. Acta Mater., 2017, 124: 437
doi: 10.1016/j.actamat.2016.11.012
13
Guan Q F, Ji L, Cai J, et al. Surface microstructure and properties of 3Cr13 martensitic stainless steel after high current pulsed electron beam bombardment[J]. J. Jilin Univ. (Eng. Technol. Ed.), 2014, 44: 712
El Cheikh H, Courant B, Branchu S, et al. Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures[J]. Opt. Lasers Eng., 2012, 50: 1779
doi: 10.1016/j.optlaseng.2012.07.002
15
Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting[J]. Mater. Character., 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
16
Wang D, Yang Y Q, Su X B, et al. Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM[J]. Int. J. Adv. Manuf. Technol., 2012, 58: 1189
doi: 10.1007/s00170-011-3443-y
17
Gu H, Wei C, Li L, et al. Multi-physics modelling of molten pool development and track formation in multi-track, multi-layer and multi-material selective laser melting[J]. Int. J. Heat Mass Transf., 2020, 151: 119458
doi: 10.1016/j.ijheatmasstransfer.2020.119458
18
Hussein A, Hao L, Yan C Z, et al. Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting[J]. Mater. Des., 2013, 52: 638
doi: 10.1016/j.matdes.2013.05.070
19
Du L, Gu D D, Dai D H, et al. Relation of thermal behavior and microstructure evolution during multi-track laser melting deposition of Ni-based material[J]. Opt. Laser Technol., 2018, 108: 207
doi: 10.1016/j.optlastec.2018.06.042
20
Tang X, Zhang S, Zhang C H, et al. Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM[J]. Mater. Character., 2020, 170: 110718
doi: 10.1016/j.matchar.2020.110718
21
Song Y N, Sun Q D, Guo K, et al. Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting[J]. Mater. Sci. Eng., 2020, A793: 139879
22
Rajeshkumar R, Niranjani V L, Devakumaran K, et al. Fusion boundary microstructure evolution and mechanical properties of cold metal transfer welded dissimilar A5754 and A5083 joint[J]. Mater. Lett., 2021, 284: 128877
doi: 10.1016/j.matlet.2020.128877
23
Kim C K, Kim J H, Hong H U, et al. Behavior of weld pool convection and columnar-to-equiaxed grain transition in gas tungsten arc welds of ferritic stainless steels with different aluminum contents[J]. J. Mater. Process. Technol., 2021, 289: 116946
doi: 10.1016/j.jmatprotec.2020.116946
24
Chen W, Hou J, Huang A J. Effect of heat treatment on microstructure and mechanical property of 304L stainless steel prepared by selective laser melting[J]. Trans. Mater. Heat Treat., 2020, 41(3): 103
Geng S N, Jiang P, Shao X Y, et al. Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet[J]. J. Mater. Sci. Technol., 2020, 46: 50
doi: 10.1016/j.jmst.2019.10.027
26
Leicht A, Klement U, Hryha E. Effect of build geometry on the microstructural development of 316L parts produced by additive manufacturing[J]. Mater. Character., 2018, 143: 137
doi: 10.1016/j.matchar.2018.04.040
27
Chong Y, Deng G Y, Gao S, et al. Yielding nature and Hall-Petch relationships in Ti-6Al-4V alloy with fully equiaxed and bimodal microstructures[J]. Scr. Mater., 2019, 172: 77
doi: 10.1016/j.scriptamat.2019.07.015
28
Kang B, Lee J, Ryu H J, et al. Microstructure, mechanical property and Hall-Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process[J]. J. Alloys Compd., 2018, 767: 1012
doi: 10.1016/j.jallcom.2018.07.145
29
Zhang K, Li Z D, Sun F L, et al. Effect of cooling rate on microstructure evolution and mechanical properties of Ti-V-Mo complex microalloyed steel[J]. Acta Metall. Sin., 2018, 54: 31
doi: 10.11900/0412.1961.2017.00202
Wang X, Liu R C, Cao R X, et al. Effect of cooling rate on boride and room temperature tensile properties of β-solidifying γ-TiAl alloys[J]. Acta Metall. Sin., 2020, 56: 203