Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture
ZHAO Yafeng1,2, LIU Sujie1, CHEN Yun1, MA Hui1, MA Guangcai3, GUO Yi1()
1Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article:
ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture. Acta Metall Sin, 2023, 59(5): 611-622.
Ferrite-bainite dual-phase steel is widely used in the automotive industry owing to its high strength and excellent ductility. The impact of inclusions and void growth behavior in dual-phase steel is a major concern among researchers seeking to achieve better mechanical properties. To investigate this, a cross-length-scale multimodal method was employed to study the influence of local microstructures on void growth during ductile fracture of a dual-phase ferrite-bainite steel. During tensile testing, laboratory X-ray computed tomography (XCT) was used to measure the evolution of void volume. 3D-electron back scatter diffraction (3D-EBSD) provided information about the voids nucleated at both inclusion particles and bainite phases or their boundaries. Carefully controlled, broad-focused ion beam excavation was performed to reveal a new interface at a specific depth of the voids. Results showed that voids resulting from large inclusions are significantly bigger than either small inclusions or the bainite phase. Large inclusions lead to large voids even when the strain correlated with the growth of those voids is lower. An investigation of the dislocation densities surrounding the voids suggested that they may be related to the strain gradient around the different inclusion sizes. A critical inclusion size estimated to be around 1.85-2.86 μm was found below which nucleation occurs but with limited growth. The elevated rate of local dislocation multiplication due to local deformation gradient effects can impede the growth of smaller voids. The growth of voids is heterogeneous, and their shape correlates well with the deformability of the surrounding grains, as indicated by a Schmid factor weighted using the grain size. This weighted Schmid factor explains not only the shape of the voids but also sheds light on the ease of void coalescence based on the microstructures separating the voids.
Fund: National Natural Science Foundation of China(52201149);National Science and Technology Major Project(J2019-VI-0019-0134);Strategic Priority Research Program of Chinese Academy of Sciences(XDC04000000);ERC CORREL-CT Project(695638)
Fig.1 2D slice images of time-lap CT scans at different strain (ε) levels post ultimate tensile strength (UTS) (a-h) and stress-strain curve (i) (The rate of void nucleation increases rapidly between nominal strain of 0.05 and 0.053, which quickly coalesced and led to fracture) Color online (a) ε = 0.038 (b) ε = 0.047 (c) ε = 0.049 (d) ε = 0.05 (e) ε = 0.053 (f) fracture (g) slice at the fracture surface before fracture in Fig.1e (h) slice at the region of interest shown in Fig.1e
Fig.2 Equivalent diameters of two voids in Fig.1a as a function of true strain at the corresponding cross section of the sample (Each data point corresponds to a scan point marked in Fig.1i) Color online
Fig.3 Multimodal correlative approach to study void growth Color online (a) XCT morphology of the fractured sample, voids coloured in red (b) bulk cut out by PFIB at the corresponding location indicated by circle in Fig.3a (c) serial sectioning 3D-EBSD reconstruction (~98 μm × 98 μm × 80 μm) of the cutted bulk shown in Fig.3b (d) comparisons between 2D and 3D grain size distributions
Fig.4 High resolution XCT morphology of the two voids shown in Fig.1a together with the grains surrounding the two voids (a), illustration demonstrating void expansion caused by glide of dislocation loops (b—Burgers vector module) (b) Color online
Fig.5 EBSD band contrast maps (a-c) and EBSD maps colored with Euler angles (d-f) in low strained region showing the un-deformed images (a, d) and high strained regions featuring the mid cross section of void 1 (b, e) and void 2 (c, f) Color online
Fig.6 Sizes and types of void in the PFIB-SEM sampled volume (~98 µm × 98 µm × 80 µm) (a) and SEM images of voids type 1 (b), type 2 (c), and type 3 (d) Color online
Fig.7 Void size as a function of inclusion size Color online
Fig.8 Average geometrically necessary dislocation (GND) density in the vicinity of voids as a function of associated inclusion size
Fig.9 GND densities (ρGND) (a1, b1) and Schmid factors (a2, b2) of the left and right parts around the voids in Figs.9a3 and b3; and EBSD band contrast maps (a3, b3), Schmid factor distributions (a4, b4), weighted Schmid factor distributions (a5, b5), and GND density distributions (a6, b6) of void 1 (a1-a6) and void 2 (b1-b6) Color online
Material
μ / GPa
σy / MPa
/ MPa
rc / µm
Low-carbon steel
80
295
200
2.06
Ferrite in ferrite-bainite dual-phase steel[45]
72
370
106
2.51
Bainite in ferrite-bainite dual-phase steel[45]
76
830
258
0.51
Ferrite in 600 MPa ferrite-martensite dual-phase steel[46]
78
313
160
2.30
Martensite in 600 MPa ferrite-martensite dual-phase steel[46]
79
1014
167
0.32
Ferrite in 1000 MPa ferrite-martensite dual-phase steel[46]
78
443
141
1.85
Martensite in 1000 MPa ferrite-martensite dual-phase steel[46]
79
813
280
0.52
Ferrite in ferrite-martensite dual-phase steel[47]
79
260
159
2.86
Martensite in ferrite-martensite dual-phase steel[47]
79
1000
460
0.26
Ferrite in ferrite-martensite dual-phase steel[48]
77
430
117
2.24
Martensite in ferrite-martensite dual-phase steel[48]
77
1450
431
0.18
Table 1 Critical particle sizes across various types of steels estimated according to Equation (6)
Material
Matrix
Inclusion type
Critical size of inclusion / µm
Ref.
Steel
Ferrite
Silicate, TiN
2-4
[49]
A508 steel
Bainite
MnS
17 × 10 × 3
[50]
SAE52100
Martensite
Ca-Al-O, Ti(N, C)
21
[51]
600 MPa high-strength steel
Martensite
Inclusion
2
[52]
Ferrite-martensite dual-phase steel
Ferrite + martensite
Inclusion
Correlated with martensite phase size
[48]
High-strength steel
Martensite
Al2O3
16
[53]
High-strength steel
Martensite
TiN
11
[53]
Bearing steel
Martensite
Mg-Al-O
8.5
[54]
Bearing steel
Martensite
Calcium aluminate
13.5
[54]
Pipeline steel
Ferrite + pearlite
MnS
2.52-2.6
[55]
SLM IN718
Ni suppralloy
Void
20
[56]
Table 2 Literature reports on the magnitude of the critical particle size across various types of steels[48-56]
1
Pierman A P, Bouaziz O, Pardoen T, et al. The influence of microstructure and composition on the plastic behaviour of dual-phase steels[J]. Acta Mater., 2014, 73: 298
doi: 10.1016/j.actamat.2014.04.015
2
Tasan C C, Diehl M, Yan D, et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design[J]. Annu. Rev. Mater. Res., 2015, 45: 391
doi: 10.1146/matsci.2015.45.issue-1
3
Matsuno T, Teodosiu C, Maeda D, et al. Mesoscale simulation of the early evolution of ductile fracture in dual-phase steels[J]. Int. J. Plast., 2015, 74: 17
doi: 10.1016/j.ijplas.2015.06.004
4
Toda H, Takijiri A, Azuma M, et al. Damage micromechanisms in dual-phase steel investigated with combined phase- and absorption-contrast tomography[J]. Acta Mater., 2017, 126: 401
doi: 10.1016/j.actamat.2017.01.010
5
Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture[J]. Acta Mater., 2016, 107: 424
doi: 10.1016/j.actamat.2015.12.034
6
Goods S H, Brown L M. Overview No. 1: The nucleation of cavities by plastic deformation[J]. Acta Metall., 1979, 27: 1
doi: 10.1016/0001-6160(79)90051-8
7
Babout L, Brechet Y, Maire E, et al. On the competition between particle fracture and particle decohesion in metal matrix composites[J]. Acta Mater., 2004, 52: 4517
doi: 10.1016/j.actamat.2004.06.009
8
Achouri M, Germain G, Dal Santo P, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Mater. Des., 2013, 50: 207
doi: 10.1016/j.matdes.2013.02.075
9
Benzerga A A, Besson J, Pineau A. Anisotropic ductile fracture: Part I: Experiments[J]. Acta Mater., 2004, 52: 4623
doi: 10.1016/j.actamat.2004.06.020
10
Liang W, Yuan Q, Chen G H, et al. Fracture evolution in ferrite/martensite dual-phase flange steel[J]. Ironmak. Steelmak., 2021, 48: 88
doi: 10.1080/03019233.2020.1733779
11
Komori K. Simulation of the influence of Lode parameter on ductile fracture using an ellipsoidal void model[J]. Int. J. Solids Struct., 2021, 229: 111143
doi: 10.1016/j.ijsolstr.2021.111143
12
Marteleur M, Leclerc J, Colla M S, et al. Ductile fracture of high strength steels with morphological anisotropy, Part I: Characterization, testing, and void nucleation law[J]. Eng. Fract. Mech., 2021, 244: 107569
doi: 10.1016/j.engfracmech.2021.107569
13
Kusche C F, Pütz F, Münstermann S, et al. On the effect of strain and triaxiality on void evolution in a heterogeneous microstructure—A statistical and single void study of damage in DP800 steel[J]. Mater. Sci. Eng., 2021, A799: 140332
14
Lubarda V A, Schneider M S, Kalantar D H, et al. Void growth by dislocation emission[J]. Acta Mater., 2004, 52: 1397
doi: 10.1016/j.actamat.2003.11.022
15
Greenwood G W, Harris J E. Note on vacancy condensation on particles[J]. Acta Metall., 1965, 13: 936
doi: 10.1016/0001-6160(65)90092-1
16
Ashby M F. Work hardening of dispersion-hardened crystals[J]. Philos. Mag., 1966, 14A: 1157
17
Bulatov V V, Wolfer W G, Kumar M. Shear impossibility: Comments on “Void growth by dislocation emission” and “Void growth in metals: Atomistic calculations”[J]. Scr. Mater., 2010, 63: 144
doi: 10.1016/j.scriptamat.2010.03.001
18
Gungor M R, Maroudas D, Zhou S J. Molecular-dynamics study of the mechanism and kinetics of void growth in ductile metallic thin films[J]. Appl. Phys. Lett., 2000, 77: 343
doi: 10.1063/1.126971
19
Segurado J, Llorca J. Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals[J]. Int. J. Plast., 2010, 26: 806
doi: 10.1016/j.ijplas.2009.10.009
20
Scheyvaerts F, Pardoen T, Onck P R. A new model for void coalescence by internal necking[J]. Int. J. Damage Mech., 2010, 19: 95
doi: 10.1177/1056789508101918
21
Weck A, Wilkinson D S, Maire E, et al. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[J]. Acta Mater., 2008, 56: 2919
doi: 10.1016/j.actamat.2008.02.027
22
Pardoen T, Doghri I, Delannay F. Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars[J]. Acta Mater., 1998, 46: 541
doi: 10.1016/S1359-6454(97)00247-4
23
Tanaka K, Mori T, Nakamura T. Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix[J]. Philos. Mag., 1970, 21A: 267
24
Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol., 1977, 99: 2
doi: 10.1115/1.3443401
25
Tvergaard V. Influence of voids on shear band instabilities under plane strain conditions[J]. Int. J. Fract., 1981, 17: 389
doi: 10.1007/BF00036191
26
Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metall., 1984, 32: 157
doi: 10.1016/0001-6160(84)90213-X
27
Burnett T L, McDonald S A, Gholinia A, et al. Correlative tomography[J]. Sci. Rep., 2014, 4: 4711
doi: 10.1038/srep04711
pmid: 24736640
28
Slater T J A, Bradley R S, Bertali G, et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel[J]. Sci. Rep., 2017, 7: 7332
doi: 10.1038/s41598-017-06976-5
pmid: 28779097
29
Daly M, Burnett T L, Pickering E J, et al. A multi-scale correlative investigation of ductile fracture[J]. Acta Mater., 2017, 130: 56
doi: 10.1016/j.actamat.2017.03.028
30
Ishikawa N, Yasuda K, Sueyoshi H, et al. Microscopic deformation and strain hardening analysis of ferrite-bainite dual-phase steels using micro-grid method[J]. Acta Mater., 2015, 97: 257
doi: 10.1016/j.actamat.2015.06.037
31
Burnett T L, Kelley R, Winiarski B, et al. Large volume serial section tomography by Xe plasma FIB dual beam microscopy[J]. Ultramicroscopy, 2016, 161: 119
doi: S0304-3991(15)30064-4
pmid: 26683814
32
Burnett T L, Winiarski B, Kelley R, et al. Xe+ plasma FIB: 3D microstructures from nanometers to hundreds of micrometers[J]. Microsc. Today, 2016, 24: 32
33
Watanabe R. Possible slip systems in body centered cubic iron[J]. Mater. Trans., 2006, 47: 1886
doi: 10.2320/matertrans.47.1886
34
Weinberger C R, Boyce B L, Battaile C C. Slip planes in bcc transition metals[J]. Int. Mater. Rev., 2013, 58: 296
doi: 10.1179/1743280412Y.0000000015
35
Nye J F. Some geometrical relations in dislocated crystals[J]. Acta Metall., 1953, 1: 153
doi: 10.1016/0001-6160(53)90054-6
36
Pantleon W. Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[J]. Scr. Mater., 2008, 58: 994
doi: 10.1016/j.scriptamat.2008.01.050
37
Wilkinson A J, Meaden G, Dingley D J. High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity[J]. Ultramicroscopy, 2006, 106: 307
pmid: 16324788
38
Britton T B, Liang H, Dunne F P E, et al. The effect of crystal orientation on the indentation response of commercially pure titanium: Experiments and simulations[J]. Proc. Roy. Soc., 2010, 466A: 695
39
Britton T B, Wilkinson A J. Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band[J]. Acta Mater., 2012, 60: 5773
doi: 10.1016/j.actamat.2012.07.004
40
Guo Y, Collins D M, Tarleton E, et al. Dislocation density distribution at slip band-grain boundary intersections[J]. Acta Mater., 2020, 182: 172
doi: 10.1016/j.actamat.2019.10.031
41
Brown L M, Stobbs W M. The work-hardening of copper-silica V. Equilibrium plastic relaxation by secondary dislocations[J]. Philos. Mag., 1976, 34A: 351
42
Traiviratana S, Bringa E M, Benson D J, et al. Void growth in metals: Atomistic calculations[J]. Acta Mater., 2008, 56: 3874
doi: 10.1016/j.actamat.2008.03.047
43
Lavrentev F F. The type of dislocation interaction as the factor determining work hardening[J]. Mater. Sci. Eng., 1980, 46: 191
doi: 10.1016/0025-5416(80)90175-5
44
Guo Y, Schwiedrzik J, Michler J, et al. On the nucleation and growth of twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution[J]. Acta Mater., 2016, 120: 292
doi: 10.1016/j.actamat.2016.08.073
45
Zhao Z T, Wang X S, Qiao G Y, et al. Effect of bainite morphology on deformation compatibility of mesostructure in ferrite/bainite dual-phase steel: Mesostructure-based finite element analysis[J]. Mater. Des., 2019, 180: 107870
doi: 10.1016/j.matdes.2019.107870
46
Fillafer A, Krempaszky C, Werner E. On strain partitioning and micro-damage behavior of dual-phase steels[J]. Mater. Sci. Eng., 2014, A614: 180
47
Brands D, Balzani D, Scheunemann L, et al. Computational modeling of dual-phase steels based on representative three-dimensional microstructures obtained from EBSD data[J]. Arch. Appl. Mech., 2016, 86: 575
doi: 10.1007/s00419-015-1044-1
48
Liu Y, Fan D W, Arroyave R, et al. Microstructure-based modeling of the effect of inclusion on the bendability of advanced high strength dual-phase steels[J]. Metals, 2021, 11: 431
doi: 10.3390/met11030431
49
Klevebring B I, Bogren E, Mahrs R. Determination of the critical inclusion size with respect to void formation during hot working[J]. Metall. Trans., 1975, 6A: 319
50
Ye Y G. Cavity nucleation, growth and stress field in elastic-plastic medium[J]. Acta Mech. Sol. Sin., 1990, 11: 201
叶裕恭. 弹塑性材料中孔洞成核、发展及应力场[J]. 固体力学学报, 1990, 11: 201
51
Bomas H, Mayr P, Linkewitz T. Inclusion size distribution and endurance limit of a hard steel[J]. Extremes, 1999, 2: 149
doi: 10.1023/A:1009918902623
52
Lee M, Kang N, Liu S, et al. Effects of inclusion size and acicular ferrite on cold cracking for high-strength steel welds of YS 600 MPa grade[J]. Sci. Technol. Weld. Joining, 2016, 21: 711
doi: 10.1080/13621718.2016.1178833
53
Wang P, Wang B, Liu Y, et al. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel[J]. Scr. Mater., 2022, 206: 114232
doi: 10.1016/j.scriptamat.2021.114232
54
Gu C, Wang M, Bao Y P, et al. Quantitative analysis of inclusion engineering on the fatigue property improvement of bearing steel[J]. Metals, 2019, 9: 476
doi: 10.3390/met9040476
55
Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping[J]. Int. J. Hydrogen Energy, 2020, 45: 12616
doi: 10.1016/j.ijhydene.2020.02.131
56
Prithivirajan V, Sangid M D. The role of defects and critical pore size analysis in the fatigue response of additively manufactured IN718 via crystal plasticity[J]. Mater. Des., 2018, 150: 139
doi: 10.1016/j.matdes.2018.04.022
57
Chen Y H, Park S U, Wei D, et al. A dictionary approach to electron backscatter diffraction indexing[J]. Microsc. Microanal., 2015, 21: 739
doi: 10.1017/S1431927615000756
pmid: 26055190
58
Singh S, Guo Y, Winiarski B, et al. High resolution low kV EBSD of heavily deformed and nanocrystalline aluminium by dictionary-based indexing[J]. Sci. Rep., 2018, 8: 10991
doi: 10.1038/s41598-018-29315-8
pmid: 30030500
59
Ashby M F, Gelles S H, Tanner L E. The stress at which dislocations are generated at a particle-matrix interface[J]. Philos. Mag., 1969, 19A: 757
60
Babout L, Maire E, Fougères R. Damage initiation in model metallic materials: X-ray tomography and modelling[J]. Acta Mater., 2004, 52: 2475
doi: 10.1016/j.actamat.2004.02.001