Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 114-128    DOI: 10.11900/0412.1961.2021.00222
Research paper Current Issue | Archive | Adv Search |
Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property
LI Shaojie1, JIN Jianfeng1,2(), SONG Yuhao1, WANG Mingtao1, TANG Shuai2, ZONG Yaping1, QIN Gaowu1()
1. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property”. Acta Metall Sin, 2022, 58(1): 114-128.

Download:  HTML  PDF(3490KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Rare earth Mg alloys containing Gd elements can be used in aerospace, automotive, and other industrial fields owing to their high strength and creep resistance at room and high temperatures. However, the poor ductility of Mg alloys limits their application. Recently, it was discovered that the ductility of Mg alloy can be improved without compromising on its strength if sufficient amount of coarse grains is distributed in fine grains. In this study, taking the Mg-8Gd-3Y-0.5Zr (GW83K) alloy as an example, an approach for optimizing multimodal microstructures was investigated, which aimed to improve the mechanical properties of alloys. An alloy with a multimodal grain structure can be used as a particulate compound model, in which the grain boundary is considered the matrix, and different-sized grains are treated as different-types of particles embedded into the grain boundary matrix. A 2D finite element micromechanics model combined with Taylor-based nonlocal plasticity theory, which considers the size effect of the particles, was established to simulate the mechanical response of the multimodal structure Mg alloy in a tensile test. The model was verified through the experimental data of the stress-strain curve. Moreover, the effects of process parameters on the mechanical properties of the GW83K alloy were further evaluated by combining the grain structure under different annealing processes, simulated from a real space-time phase-field model as the geometric input of the finite element model. Finally, the relationships between the annealing parameters, multimodal structure, and mechanical properties of the GW83K alloy were described. The results show that the yield and tensile strengthes of the multimodal GW83K alloy presented a Hall-Petch relationship with the average grain size. The content and distribution of coarse grains greatly affected the plasticity of the GW83K alloy. By annealing the GW83K alloy at 623 K for 90 min, better plasticity could be achieved without sacrificing strength, which is helpful in promoting multimodal microstructural design.

Key words:  magnesium alloy      multimodal grain      mechanical property      microstructural design      finite element method     
Received:  21 May 2021     
ZTFLH:  TG113.25  
Fund: National Key Research and Development Program of China(2016YFB0701204);Project of Introducing Talents of Discipline to Universities(B20029);Fundamental Research Funds for the Central Universities(N2007011)
About author:  QIN Gaowu, professor, Tel: (024)83691565, E-mail: qingw@smm.neu.edu.cn
JIN Jianfeng, associate professor, Tel: 13194248493, E-mail: jinjf@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00222     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/114

Fig.1  Free energy-component data of GW83K Mg alloy at 623, 673, and 723 K, and their fitting curves (c Gd—concentration of Gd)
T A A 1 A 2 B 1 B 2 L ̂ c 1 ϕ 2nd f 2nd d 2nd
K kJ·mol-1 kJ·mol-1 kJ·mol-1 kJ·mol-1 kJ·mol-1 mol·s-1·J-1 % μm
623 -49.2 297.3 -775.2 371 51.2 0.45 0.46 Lath 0.67 1-2
673 -52.6 308 -869.6 365.7 51.2 1.22 0.46 Lath 1.35 1-2
723 -55.9 322.4 -901.1 373.7 51.2 2.72 0.46 Sphere 1.35 1-2
Table 1  Parameters in the phase-field model for grain growth
Fig.2  Averaged grain sizes obtained by phase field simulation and experiment[67] under different annealing processes
Fig.3  Schematics of the finite element (FE) model for GW83K Mg alloy with multimodal grain size distribution
Fig.4  Experimental tensile stress-strain (σ-ε) curves and constitutive input curves for monolithic grain GW83K Mg alloy with different grain sizes
(a) experimental data[13,74] ( d ˉ —average grain size from experiment, d 1 g - d 6 g —grain size ranges of the grain-interior phases 1-6)
(b) constitutive inputs of grain-interior phases 1-6 ( g 1 i n - g 6 i n ) for finite element model
Fig.5  Predicted results from the finite element model for GW83K Mg alloy during tensile loading
(a) comparison of the predicted σ-ε curves with the experimental data[13]
(b) von Mises equivalent (EQV.) stress contours under the applied strain of 11%
(c) EQV. strain contours under the applied strain of 11% (GB—grain boundary-matrix phase)
Model Annealing temperature Annealing time
No. K min
1 623 60
2 623 75
3 623 90
4 673 60
5 673 75
6 673 90
7 723 60
8 723 75
9 723 90
Table 2  The values of annealing temperature and time in phase field models for GW83K Mg alloy
Fig.6  Microstructures and grain size distributions of GW83K Mg alloy under different annealing processes
(a, b) microstructures from phase field models with and without the 2nd phase particles after annealing at 723 K for 90 min, respectively
(c) grain size distributions for Figs.6a and b
(d) d ˉ from the phase field model with and without the 2nd phase particles under different annealing processes
Fig.7  Microstructures (a) and geometric models (b) of GW83K Mg alloy without the 2nd phase particle from phase-field simulation at different annealing temperatures and time (marked with model Nos.1-9, grain-interior phases 1-6 marked by different colors and grain boundaries marked by black)
Fig.8  Microstructure characteristics in finite element model of GW83K Mg alloy
(a) volume fraction of grain boundary (f GB) and d ˉ of model Nos.1-9
(b-d) grain size distributions under 623 K, 673 K, and 723 K for different annealing time, respectively
Fig.9  Simulation results of finite element model of GW83K Mg alloys under different annealing processes
(a) σ-ε curves
(b) relationship among average grain size and yield strength (σ y), tensile strength (σ s), and total elongation (ε s)
(c) EQV. strain contours of model Nos.1-9, distinguished by the critical strain (ε CR)
(d) relationship among the d ˉ and proportion of slip band (γ s ) ? and volume fraction of coarse grains (f CG)
Fig.10  Mechanical responses from finite element model for GW83K Mg alloy with and without the 2nd phase particles from model A, B, and C after annealing at 723 K for 90 min (a) and EQV. strain contours of models A and C under fractured strain (b) (Model A is the FE simulation from microstructure with the 2nd phase particles after annealing, model B is from microstructure without the 2nd phase particles after annealing, and model C is from Fig.10a without the 2nd phase particles)
1 Shibata T , Kawanishi M , Nagahora J , et al . High specific strength of extruded Mg-Al-Ge alloys produced by rapid solidification processing [J]. Mater. Sci. Eng., 1994, A179-180: 632
2 Decker R F . The renaissance in magnesium [J]. Adv. Mater. Process., 1998, 154: 31
3 Mukai T , Mohri T , Mabuchi M , et al . Experimental study of a structural magnesium alloy with high absorption energy under dynamic loading [J]. Scr. Mater., 1998, 39: 1249
4 Li S B , Yang X Y , Hou J T , et al . A review on thermal conductivity of magnesium and its alloys [J]. J. Magnes. Alloy., 2020, 8: 78
5 Han G M , Han Z Q , Luo A A , et al . Microstructure characteristics and effect of aging process on the mechanical properties of squeeze-cast AZ91 alloy [J]. J. Alloys Compd., 2015, 641: 56
6 Tang W R , Liu Z , Liu S M , et al . Deformation mechanism of fine grained Mg-7Gd-5Y-1.2Nd-0.5Zr alloy under high temperature and high strain rates [J]. J. Magnes. Alloys, 2020, 8: 1144
7 Liu X B , Chen R S , Han E H . High temperature deformations of Mg-Y-Nd alloys fabricated by different routes [J]. Mater. Sci. Eng., 2008, A497: 326
8 Zhang P , Ding W J , Lindemann J , et al . Mechanical properties of the hot-rolled Mg-12Gd-3Y magnesium alloy [J]. Mater. Chem. Phys., 2009, 118: 453
9 Liu H H , Ning Z L , Yi J Y , et al . Effect of Dy addition on microstructure and mechanical properties of Mg-4Y-3Nd-0.4Zr alloy [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 797
10 Liu X F , Chen X H , Li J B , et al . Effect of micro-alloying Ca on microstructure, texture and mechanical properties of Mg-Zn-Y-Ce alloys [J]. Prog. Nat. Sci. Mater., 2020, 30: 213
11 Zhang T X , Zhao X T , Liu J H , et al . The microstructure, fracture mechanism and their correlation with the mechanical properties of as-cast Mg-Nd-Zn-Zr alloy under the effect of cooling rate [J]. Mater. Sci. Eng., 2021, A801: 140382
12 Kou H N , Lu J , Li Y . High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
13 He J H , Jin L , Wang F H , et al . Mechanical properties of Mg-8Gd-3Y-0.5Zr alloy with bimodal grain size distributions [J]. J. Magnes. Alloys, 2017, 5: 423
14 Xu C , Fan G H , Nakata T , et al . Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
15 Zhang H , Wang H Y , Wang J G , et al . The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
16 Jin Z Z , Zha M , Yu Z Y , et al . Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg-Al-Zn alloys [J]. J. Alloys Compd., 2020, 833: 155004
17 Wei X X , Jin L , Wang F H , et al . High strength and ductility Mg-8Gd-3Y-0.5Zr alloy with bimodal structure and nano-precipitates [J]. J. Mater. Sci. Technol., 2020, 44: 19
18 Liu S S , Zhang J L , Chen X , et al . Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding [J]. Mater. Sci. Eng., 2020, A785: 139324
19 Xu C , Zheng M Y , Xu S W , et al . Ultra high-strength Mg-Gd-Y-Zn-Zr alloy sheets processed by large-strain hot rolling and ageing [J]. Mater. Sci. Eng., 2012, A547: 93
20 Peng P , Tang A T , She J , et al . Significant improvement in yield stress of Mg-Gd-Mn alloy by forming bimodal grain structure [J]. Mater. Sci. Eng., 2021, A803: 140569
21 Dobkowska A , Adamczyk-Cieślak B , Kubásek J , et al . Microstructure and corrosion resistance of a duplex structured Mg-7.5Li-3Al-1Zn [J]. J. Magnes. Alloys, 2021, 9: 467
22 Li Y K , Zha M , Jia H L , et al . Tailoring bimodal grain structure of Mg-9Al-1Zn alloy for strength-ductility synergy: Co-regulating effect from coarse Al2Y and submicron Mg17Al12 particles [J]. J. Magnes. Alloys, 2021,9: 1556
23 Wang H Y , Yu Z P , Zhang L , et al . Achieving high strength and high ductility in magnesium alloy using hard-plate rolling (HPR) process [J]. Sci. Rep., 2015, 5: 17100
24 Gao M , Yang K , Tan L L , et al . Role of bimodal-grained structure with random texture on mechanical and corrosion properties of a Mg-Zn-Nd alloy [J]. J. Magnes. Alloys, 2021, doi: 10.1016/j.jma.2021.03.024
25 Cubides Y , Karayan A I , Vaughan M W , et al . Enhanced mechanical properties and corrosion resistance of a fine-grained Mg-9Al-1Zn alloy: The role of bimodal grain structure and β-Mg17Al12 precipitates [J]. Materialia, 2020, 13: 100840
26 Asqardoust S , Hanzaki A Z , Abedi H R , et al . Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening [J]. Mater. Sci. Eng., 2017, A698: 218
27 Lu K . Making strong nanomaterials ductile with gradients [J]. Science, 2014, 345: 1455
28 Wu X L , Yang M X , Yuan F P , et al . Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
29 Zhu Y T , Wu X L . Perspective on hetero-deformation induced (HDI) hardening and back stress [J]. Mater. Res. Lett., 2019, 7: 393
30 Wu J L , Jin L , Dong J , et al . The texture and its optimization in magnesium alloy [J]. J. Mater. Sci. Technol., 2020, 42: 175
31 Zheng R X , Du J P , Gao S , et al . Transition of dominant deformation mode in bulk polycrystalline pure Mg by ultra-grain refinement down to sub-micrometer [J]. Acta Mater., 2020, 198: 35
32 Li X X , Xu D S , Yang R . Crystal plasticity finite element method investigation of the high temperature deformation consistency in dual-phase titanium alloy [J]. Acta Metall. Sin., 2019, 55: 928
李学雄, 徐东生, 杨 锐 . 双相钛合金高温变形协调性的CPFEM研究 [J]. 金属学报, 2019, 55: 928
33 Zhang Y , Chen H , Jia Y F , et al . A modified kinematic hardening model considering hetero-deformation induced hardening for bimodal structure based on crystal plasticity [J]. Int. J. Mech. Sci., 2021, 191: 106068
34 Joshi S P , Ramesh K T , Han B Q , et al . Modeling the constitutive response of bimodal metals [J]. Metall. Mater. Trans., 2006, 37A: 2397
35 Yadollahpour M , Hosseini-Toudeshky H . Material properties and failure prediction of ultrafine grained materials with bimodal grain size distribution [J]. Eng. Comput., 2017, 33: 125
36 Guo X , Dai X Y , Zhu L L , et al . Numerical investigation of fracture behavior of nanostructured Cu with bimodal grain size distribution [J]. Acta. Mech., 2014, 225: 1093
37 Dai L H , Ling Z , Bai Y L . Size-dependent inelastic behavior of particle-reinforced metal-matrix composites [J]. Compos. Sci. Technol., 2001, 61: 1057
38 Gao H J , Huang Y G . Taylor-based nonlocal theory of plasticity [J]. Int. J. Solids Struct., 2001, 38: 2615
39 Gao H J , Huang Y , Nix W D , et al . Mechanism-based strain gradient plasticity—I. Theory [J]. J. Mech. Phys. Solids, 1999, 47: 1239
40 Huang Y , Qu S , Hwang K C , et al . A conventional theory of mechanism-based strain gradient plasticity [J]. Int. J. Plast., 2004, 20: 753
41 Shao J C , Xiao B L , Wang Q Z , et al . An enhanced FEM model for particle size dependent flow strengthening and interface damage in particle reinforced metal matrix composites [J]. Compos. Sci. Technol., 2011, 71: 39
42 Cao J Y , Jin J F , Wang L , et al . Finite-element modeling of particle size effect on mechanical properties of SiCp/Fe composites [J]. IOP Conf. Ser. Mater. Sci. Eng., 2018, 422: 012001
43 Zhang J F , Zhang X X , Wang Q Z , et al . Simulation of anisotropic load transfer and stress distribution in SiCp/Al composites subjected to tensile loading [J]. Mech. Mater., 2018, 122: 96
44 Gao X , Zhang X X , Geng L . Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture [J]. Mater. Sci. Eng., 2019, A740-741: 353
45 Schwaiger R , Moser B , Dao M , et al . Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel [J]. Acta Mater., 2003, 51: 5159
46 Wang M T , Zong B Y , Wang G . A phase-field model to simulate recrystallization in an AZ31 Mg alloy in comparison of experimental data [J]. J. Mater. Sci. Technol., 2008, 24: 829
47 Taylor G I . Plastic strain in metals [J]. J. Inst. Met., 1938, 62: 307
48 Mecking H , Kocks U F . Kinetics of flow and strain-hardening [J]. Acta Metall., 1981, 29: 1865
49 Nix W D , Gao H J . Indentation size effects in crystalline materials: A law for strain gradient plasticity [J]. J. Mech. Phys. Solids, 1998, 46: 411
50 Chawla N , Ganesh V V , Wunsch B . Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites [J]. Scr. Mater., 2004, 51: 161
51 Chawla N , Chawla K K . Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites [J]. J. Mater. Sci., 2006, 41: 913
52 Uthaisangsuk V , Prahl U , Bleck W . Micromechanical modelling of damage behaviour of multiphase steels [J]. Comput. Mater. Sci., 2008, 43: 27
53 Choi K S , Liu W N , Sun X , et al . Microstructure-based constitutive modeling of TRIP steel: Prediction of ductility and failure modes under different loading conditions [J]. Acta Mater., 2009, 57: 2592
54 Uthaisangsuk V , Prahl U , Bleck W . Modelling of damage and failure in multiphase high strength DP and TRIP steels [J]. Eng. Fract. Mech., 2011, 78: 469
55 Ayari F , Ayari F , Bayraktar E , et al . Image processing and finite element modelling for analysis of a metal matrix composite [J]. Int. J. Comput. Sci. Iss., 2012, 9: 448
56 Ramazani A , Mukherjee K , Quade H , et al . Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach [J]. Mater. Sci. Eng., 2013, A560: 129
57 Qayyum F , Umar M , Guk S , et al . Effect of the 3rd dimension within the representative volume element (RVE) on damage initiation and propagation during full-phase numerical simulations of single and multi-phase steels [J]. Materials, 2021, 14: 42
58 Cao J , Zhuang W , Wang S , et al . An integrated crystal plasticity FE system for microforming simulation [J]. J. Multiscale Model., 2009, 1: 107
59 Zhang P , Karimpour M , Balint D , et al . A controlled poisson voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis [J]. Comput. Mater. Sci., 2012, 64: 84
60 Song Y H , Wang M T , Zong Y P , et al . Grain refinement by second phase particles under applied stress in ZK60 Mg alloy with Y through phase field simulation [J]. Materials, 2018, 11: 1903
61 He R , Wang M T , Zhang X G , et al . Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation [J]. Modell. Simul. Mater. Sci. Eng., 2016, 24: 055017
62 Han G M , Han Z Q , Luo A A , et al . A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg-Al-based alloys [J]. Scr. Mater., 2013, 68: 691
63 Shang S , Guo Z P , Han Z Q . On the kinetics of dendritic sidebranching: A three dimensional phase field study [J]. J. Appl. Phys., 2016, 119: 164305
64 Cahn J W . On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
65 Allen S M , Cahn J W . A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
66 Fan D , Chen L Q . Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
67 Li L , Jie W , Wu Y Z , et al . Effect of static annealing on microstructure and texture in extruded Mg-Gd-Y-Zr Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2263
68 Verdier M , Groma I , Flandin L , et al . Dislocation densities and stored energy after cold rolling of Al-Mg alloys: Investigations by resistivity and differential scanning calorimetry [J]. Scr. Mater., 1997, 37: 449
69 Andersson J O , Helander T , Höglund L , et al . Thermo-Calc & DICTRA, computational tools for materials science [J]. Calphad, 2002, 26: 273
70 Ganeshan S , Shang S L , Wang Y , et al . Effect of alloying elements on the elastic properties of Mg from first-principles calculations [J]. Acta Mater., 2009, 57: 3876
71 Polk D E , Giessen B C , Gardner F S . State-of-the-art and prospects for magnetic, electronic and mechanical applications of amorphous metals A synopsis of the ONR materials workshop at Northeastern University, Boston, Mass., November 20-21, 1975 [J]. Mater. Sci. Eng., 1976, 23: 309
72 Kim H S , Estrin Y , Bush M B . Plastic deformation behaviour of fine-grained materials [J]. Acta Mater., 2000, 48: 493
73 Fu H H , Benson D J , Meyers M A . Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49: 2567
74 Li J , Zhao M J , Jin L , et al . Simultaneously improving strength and ductility through laminate structure design in Mg-8.0Gd- 3.0Y-0.5Zr alloys [J]. J. Mater. Sci. Technol., 2021, 71: 195
75 Warlimont H , Martienssen W . Springer Handbook of Materials Data [M]. 2nd Ed., Switzerland: Springer, 2018: 65
76 Shang X Q , Zhang H M , Wang L Y , et al . The effect of stress state and strain partition mode on the damage behavior of a Mg-Ca alloy [J]. Int. J. Plast., 2021, 144: 103040
77 Gao L , Zhou J , Sun Z M , et al . First-principles calculations of the β′-Mg7Gd precipitate in Mg-Gd binary alloys [J]. Chin. Sci. Bull., 2011, 56: 1142
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!