|
|
Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy |
XIANG Zhaolong1,2,3, ZHANG Lin1, XIN Yan3, AN Bailing1,2,3, NIU Rongmei3, LU Jun3, MARDANI Masoud3, HAN Ke3( ), WANG Engang1( ) |
1. Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 3. National High Magnetic Field Laboratory, Florida State University, Tallahassee 32310, USA |
|
Cite this article:
XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy. Acta Metall Sin, 2022, 58(1): 103-113.
|
Abstract FeCrCo permanent magnet alloys draw wide attention because of their excellent machinability. These alloys can be deformed and extruded into thin wires or sheets for various applications, such as electric motors, telephone receivers, printers, and stereo cartridges. In these alloys, the content and distribution of Cr play an important role in improving their magnetic and hardness properties. To optimize both properties of these alloys, the effect of Cr must be studied. This study describes the effect of Cr content on microstructure, i.e., volume fraction, size, and composition of α 1 and α 2 phases in (84 - X)FeXCr15Co1Si (X = 20, 25, 30, 35, mass fraction, %) samples using atomic-resolution STEM. The effect of microstructure parameters on both Vickers hardness and magnetic properties was evaluated. STEM images showed that the average size of the α 1 phase increased from 26 nm to 55 nm with an increase in Cr content from 20% to 35%. When the content of Cr increased from 20% to 25%, the volume fraction of the α 1 phase increased by 12%, and when the content of Cr increased beyond 25%, the volume fraction remained the same. EDS results showed that with the increase of Cr content, in the (Fe-Co)-rich α 1 phase, the content of Fe decreased, whereas the contents of Cr and Co increased. By contrast, in the Cr-rich α 2 phase, the contents of Fe and Co decreased but the content of Cr increased. After step aging, hardness increased because of spinodal decomposition and continued to increase with an increase in Cr content. Remanence, coercivity, and magnetic energy product reached their maximum values when the content of Cr was at 25% and decreased as the content of Cr increased. The dependence of magnetic properties on the size, volume fraction, composition of α 1 phase, and difference in composition between α 1 and α 2 phases was discussed. The mechanism for hardening was also discussed, which increased with the Cr content.
|
Received: 01 March 2021
|
|
Fund: National Natural Science Foundation of China(51674083);Programme of Introducing Talents of Discipline Innovation to Universities 2.0(BP0719037);National Science Foundation of America(DMR-1157490) |
About author: WANG Engang, professor, Tel: (024)83681739, E-mail: egwang@mail.neu.edu.cn
|
1 |
Kaneko H , Homma M , Nakamura K . New ductile permanent magnet of Fe-Cr-Co system [J]. AIP Conf. Proc., 1971, 5: 1088
|
2 |
Rastabi R A , Ghasemi A , Tavoosi M , et al . Magnetic features of Fe-Cr-Co alloys with tailoring chromium content fabricated by spark plasma sintering [J]. J. Magn. Magn. Mater., 2017, 426: 744
|
3 |
Ushakova O A , Dinislamova E H , Gorshenkov M V , et al . Structure and magnetic properties of Fe-Cr-Co nanocrystalline alloys for permanent magnets [J]. J. Alloys Compd., 2014, 586(suppl.1): S291
|
4 |
Kaneko H , Homma M , Minowa T . Effect of V and V + Ti additions on the structure and properties of Fe-Cr-Co ductile magnet alloys [J]. IEEE Trans. Magn., 1976, 12: 977
|
5 |
Zijlstra H . Trends in permanent magnet material development [J]. IEEE Trans. Magn., 1978, 14: 661
|
6 |
Altafi M , Mohammad Sharifi E , Ghasemi A . The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy [J]. J. Magn. Magn. Mater., 2020, 507: 166837
|
7 |
Homma M , Horikoshi E , Minowa T , et al . High-energy Fe-Cr-Co permanent magnets with (BH)max ≃8-10 MG Oe [J]. Appl. Phys. Lett., 1980, 37: 92
|
8 |
Minowa T , Okada M , Homma M . Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1980, 16: 529
|
9 |
Kaneko H , Homma M , Nakamura K , et al . Phase diagram of Fe-Cr-Co permanent magnet system [J]. IEEE Trans. Magn., 1977, 13: 1325
|
10 |
Kaneko H , Homma M , Nakamura K , et al . Fe-Cr-Co permanent magnet alloys containing silicon [J]. IEEE Trans. Magn., 1972, 8: 347
|
11 |
Samarin B A , Kolchin A E , Kal'Ner Y V . Effect of prior aging and flat rooling on the structure and magnetic properties of alloys of the Fe-Cr-Co-Cu system [J]. Met. Sci. Heat Treat., 1986, 28: 690
|
12 |
Stel'Mashok S I , Milyaev I M , Yusupov V S , et al . Magnetic and mechanical properties of hard magnetic alloys 30Kh21K3M and 30Kh20K2M2V [J]. Met. Sci. Heat Treat., 2017, 58: 622
|
13 |
Tao S , Ahmad Z , Khan I U , et al . Phase, microstructure and magnetic properties of 45.5Fe-28Cr-20Co-3Mo-1.5Ti-2Nb permanent magnet [J]. J. Magn. Magn. Mater., 2019, 469: 342
|
14 |
Han X H , Bu S J , Wu X , et al . Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets [J]. J. Alloys Compd., 2017, 694: 103
|
15 |
Jin S . Deformation-induced anisotropic Cr-Co-Fe permanent magnet alloys [J]. IEEE Trans. Magn., 1979, 15: 1748
|
16 |
Sugimoto S , Okada M , Homma M . The enhancement of the magnetic properties of Fe-Cr-Co-Mo polycrystalline permanent magnet alloys by cold rolling and annealing [J]. J. Appl. Phys., 1988, 63: 3707
|
17 |
Sun X Y , Xu C Y , Zhen L , et al . Evolution of modulated structure in Fe-Cr-Co alloy during isothermal ageing with different external magnetic field conditions [J]. J. Magn. Magn. Mater., 2007, 312: 342
|
18 |
Jin S , Gayle N . Low-cobalt Cr-Co-Fe magnet alloys obtained by slow cooling under magnetic field [J]. IEEE Trans. Magn., 1980, 16: 526
|
19 |
Zhang X J , Xu R G , Wu W H , et al . The influences of magnetic heat-treatment on the microstructure and magnetic properties [J]. Electr. Eng. Mater., 2002, (2): 31
|
|
张小菊, 徐仁根, 吴危航 等 . 磁场热处理对Fe-Cr-Co合金组织与性能的影响 [J]. 电工材料, 2002, (2): 31
|
20 |
Zhang L , Xiang Z L , Li X D , et al . Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary [J]. Nanomaterials (Basel), 2018, 8: 578
|
21 |
Jin S , Mahajan S , Brasen D . Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys [J]. Metall. Mater. Trans., 1980, 11A: 69
|
22 |
Suzudo T , Takamizawa H , Nishiyama Y , et al . Atomistic modeling of hardening in spinodally-decomposed Fe-Cr binary alloys [J]. J. Nucl. Mater., 2020, 540: 152306
|
23 |
Takahashi A , Suzuki T , Nomoto A , et al . Influence of spinodal decomposition structures on the strength of Fe-Cr alloys: A dislocation dynamics study [J]. Acta Mater., 2018, 146: 160
|
24 |
Tang Y P , Goto W , Hirosawa S , et al . Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Mater., 2017, 131: 57
|
25 |
Yan J Z , Li N , Fu X , et al . The strengthening effect of spinodal decomposition and twinning structure in MnCu-based alloy [J]. Mater. Sci. Eng., 2014, A618: 205
|
26 |
Kaneko H , Homma M , Fukunaga T , et al . Fe-Cr-Co permanent magnet alloys containing Nb and Al [J]. IEEE Trans. Magn., 1975, 11: 1440
|
27 |
Han K , Xin Y , Walsh R , et al . The effects of grain boundary precipitates on cryogenic properties of aged 316-type stainless steels [J]. Mater. Sci. Eng., 2009, A516: 169
|
28 |
Downey S , Han K , Kalu P N , et al . A study of submicron grain boundary precipitates in ultralow carbon 316LN steels [J]. Metall. Mater. Trans., 2010, 41A: 881
|
29 |
Sims J R , Schillig J B , Boebinger G S , et al . The U.S. NHMFL 60 T long pulse magnet [J]. IEEE Trans. Appl. Superconduct., 2002, 12: 480
|
30 |
Yang L , Sun X Y , Zhen L , et al . Hyperfine structure variations in an Fe-Cr-Co alloy exposed to electron irradiation: Mössbauer spectroscopy characterization [J]. Nucl. Instrum. Methods Phys. Res. Sect., 2014, 338B: 52
|
31 |
Belozerov E V , Mushnikov N V , Ivanova G V , et al . High-strength magnetically hard Fe-Cr-Co-based alloys with reduced content of chromium and cobalt [J]. Phys. Met. Metallogr., 2012, 113: 319
|
32 |
Yang X , Jiang Z , Li J B , et al . Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties [J]. Nano Energy, 2020, 78: 105372
|
33 |
Pathak A K , Khan M , Gschneidner K A Jr , et al . Magnetic properties of bulk, and rapidly solidified nanostructured (Nd1 - x Ce x )2-Fe14 - y Co y B ribbons [J]. Acta Mater., 2016, 103: 211
|
34 |
Pathak A K , Khan M , Gschneidner K A , et al . Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets [J]. Adv. Mater., 2015, 27: 2663
|
35 |
Drápal S . The origin of anisotropy in Fe-Cr-Co alloys [J]. Czech. J. Phys., 1987, 37B: 1174
|
36 |
López-Ortega A , Estrader M , Salazar-Alvarez G , et al . Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles [J]. Phys. Rep., 2015, 553: 1
|
37 |
Cui B Z , Han K , Garmestani H , et al . Enhancement of exchange coupling and hard magnetic properties in nanocomposites by magnetic annealing [J]. Acta Mater., 2005, 53: 4155
|
38 |
Tan X H , Li H Y , Xu H , et al . A cost-effective approach to optimizing microstructure and magnetic properties in Ce17Fe78B6 alloys [J]. Materials (Basel), 2017, 10: 869
|
39 |
Ren K Z , Tan X H , Li H Y , et al . The effects of the addition of Dy, Nb, and Ga on microstructure and magnetic properties of Nd2Fe14B/α-Fe nanocomposite permanent magnetic alloys [J]. Microsc. Microanal., 2017, 23: 425
|
40 |
Kato M . Hardening by spinodally modulated structure in b.c.c. alloys [J]. Acta Metall., 1981, 29: 79
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|