Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (8): 1009-1016    DOI: 10.11900/0412.1961.2020.00387
Research paper Current Issue | Archive | Adv Search |
Mechanical and Electrical Properties of Cu-W Composites with Micro-Oriented Structures
HAN Ying1(), WANG Hongshuang1, CAO Yundong1, AN Yuejun1, TAN Guoqi2, LI Shujun2, LIU Zengqian2, ZHANG Zhefeng2
1.School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

HAN Ying, WANG Hongshuang, CAO Yundong, AN Yuejun, TAN Guoqi, LI Shujun, LIU Zengqian, ZHANG Zhefeng. Mechanical and Electrical Properties of Cu-W Composites with Micro-Oriented Structures. Acta Metall Sin, 2021, 57(8): 1009-1016.

Download:  HTML  PDF(16050KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-W composites that combine the merits of Cu and W show good electric and heat conductivity, resistance to arc erosion, and high strength, etc., and are good candidates for electric contact materials. Until now, several methods, including the high-temperature liquid phase sintering method and the hot-pressure sintering method, have been developed to fabricate Cu-W composites. However, these methods may cause an uneven distribution of constituents in the material and a relatively low density and poor electric conductivity of the material. In this study, a Cu-W composite with micro-oriented W lamellas was prepared by the infiltration method, and the mechanical and electrical properties were investigated and compared with a commercial Cu-W composite. The results showed that the compressive strength of the studied Cu-W composite with micro-oriented W lamellas was between 300 and 1100 MPa when the W content was between 50% and 90% (mass fraction). The compressive strength of the studied composites presented obvious anisotropy, and the strength along the direction parallel to the W lamellas was higher than that perpendicular to the W lamellas. Compared with commercial Cu-W composites with disordered W frameworks, composites with micro-oriented W lamellas exhibit a higher electrical conductivity and compressive strength along the W lamellar direction, which is mainly related to the regular arrangement of the two phases of Cu and W in the composites. The studied composite is expected to be used as an electrical contact material to significantly improve the effect of electric contracts and prolong their service life while reducing the mass of the components and energy consumption.

Key words:  Cu-W composite      micro-oriented structure      mechanical property      electrical property     
Received:  24 September 2020     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51977132);Natural Science Foundation of Liaoning Province(2019-MS-249);Liaoning Province Science and Technology Major Special Project(2019JH1/10100016)
About author:  HAN Ying, associate professor, Tel: 13478250188, E-mail: hany_dq@sut.edu.cn.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00387     OR     https://www.ams.org.cn/EN/Y2021/V57/I8/1009

Fig.1  Schematic of electrical conductivity measurement sample (unit: mm)
Fig.2  Finite element simulation unit model for Cu-W composite (φ—potential, n—unit vector, J—current density vector)
ElementDensityThermal conductivityElectrical conductivityMelting point
g·cm-3W·m-1·K-1107 S·m-1
Cu8.944005.9981083
W17.801751.8253410
Table 1  Physical properties of Cu and W
Fig.3  Microstructures of micro-oriented W lamella and macrostructure of Cu-W composites
Fig.4  SEM images of Cu-W composites with micro-oriented W lamellas (50%W) (a, b) and commercial Cu-W composite with disordered W frameworks (65%W) (c, d)
Fig.5  EDS analyses of Cu-W composites with micro-oriented W lamellas (50%W) (a) and commercial Cu-W composites with disordered W frameworks (65%W) (b)
Fig.6  Compressive strengths of Cu-W composites with micro-oriented W lamellas and commercial Cu-W composites
Fig.7  Typical compressive curves of Cu-50%W composites with micro-oriented W lamellas and commercial Cu-50%W composites
Fig.8  Finite element model (a) and simulated results of current density of Cu-W composites with micro-oriented W lamellas, which current flow parallel (b) and perpendicular (c) with W lamellas
Fig.9  Finite element model (a) and simulated result of current density (b) of commercial Cu-W composites with disordered W frameworks
1 Qian B G, Geng H R, Guo Z Q, et al. Development and application of electrical contact materials [J]. Mater. Mech. Eng., 2004, 28(3): 7
钱宝光, 耿浩然, 郭忠全等. 电触头材料的研究进展与应用 [J]. 机械工程材料, 2004, 28(3): 7
2 Zheng Z, Zhou X L, Zhou Y H, et al. Effect of Ni on the microstructure and properties of O-containing Cu-W alloy [J]. Mater. Rev., 2015, 29: 505
郑 忠, 周晓龙, 周允红等. Ni元素对含O的Cu-W合金组织与性能的影响 [J]. 材料导报, 2015, 29: 505
3 German R M, Rabin B H. Enhanced sintering through second phase additions [J]. Powder Metall., 1985, 28: 7
4 Gu D D, Shen Y F. Microstructures of laser sintered micron/nano-sized Cu-W powder [J]. Acta Metall. Sin., 2009, 45: 113
顾冬冬, 沈以赴. 微/纳米Cu-W粉末激光烧结体的显微组织 [J]. 金属学报, 2009, 45: 113
5 Ma G N, Wang D, Liu Z Y, et al. Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites [J]. Acta Metall. Sin., 2019, 55: 1319
马国楠, 王 东, 刘振宇等. 热压烧结温度对SiC/Al-Zn-Mg-Cu复合材料微观结构与力学性能的影响 [J]. 金属学报, 2019, 55: 1319
6 Zhu Z F, Wang X F, Liu H, et al. Synthesis of quasi-monodispersed SnO2 microspheres via microwave solvothermal method [J]. J. Inorg. Mater., 2012, 27: 311
朱振峰, 王小枫, 刘 辉等. 准单分散SnO2微球的微波溶剂热合成 [J]. 无机材料学报, 2012, 27: 311
7 Lin Z J, Sun X D, Liu S H, et al. Effect of SnO2 particle size on properties of Ag-SnO2 electrical contact materials prepared by the reductive precipitation method [J]. Adv. Mater. Res., 2014, 936: 459
8 Qiao X Q, Shen Q H, Zhang L J, et al. A novel method for the preparation of Ag/SnO2 electrical contact materials [J]. Rare Met. Mater. Eng., 2014, 43: 2614
9 Zhang Z, Zhu P X, Zhou S G. Research and development of laminated metal composite and electrode material [J]. Hot Work. Technol., 2014, 43(18): 21
张 喆, 竺培显, 周生刚. 金属层状复合材料及电极材料的研究进展 [J]. 热加工工艺, 2014, 43(18): 21
10 Ma X H. Research on tungsten copper contact material for high voltage switch [J]. Heilongjiang Sci. Technol. Inform., 2013, (14): 48
马晓红. 高压开关用钨铜触头材料研究 [J]. 黑龙江科技信息, 2013, (14): 48
11 German R G, Hens K F, Johnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. Int. J. Powder Metall., 1994, 30: 205
12 Kan X Q, Ding J, Yu C, et al. Biomimetic synthesis of porous ZrC/C composite ceramic materials [J]. Mater. Rev., 2018, 32: 1602
阚小清, 丁 军, 余 超等. 仿生制备多孔ZrC/C复合陶瓷材料 [J]. 材料导报, 2018, 32: 1602
13 Zhuo L C, Zhao Z, Qin Z C, et al. Enhanced mechanical and arc erosion resistant properties by homogenously precipitated nanocrystalline fcc-Nb in the hierarchical W-Nb-Cu composite [J]. Composites, 2019, 161B: 336
14 Tan G Q, Zhang J, Zheng L, et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance [J]. Adv. Mater., 2019, 31: 1904603
15 Koyama M, Zhang Z, Wang M M, et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels [J]. Science, 2017, 355: 1055
16 Zhang Y, Tan G Q, Jiao D, et al. Ice-templated porous tungsten and tungsten carbide inspired by natural wood [J]. J. Mater. Sci. Technol., 2020, 45: 187
17 Wang X R, Wei S Z, Pan K M, et al. Electrical conductivity models and theoretical value calculation of W-Cu alloy [J]. Rare Met. Mater. Eng., 2019, 48: 33
18 Rajagopal C, Satyam M. Studies on electrical conductivity of insulator-conductor composites [J]. J. Appl. Phys., 1978, 49: 5536
19 Medalia A I. Electrical conduction in carbon blackcomposites [J]. Rubber Chem. Technol., 1986, 59: 432
20 van Beek L K H, van Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates [J]. J. Appl. Polym. Sci., 1962, 6: 651
21 Lei Z L, Qi C M, Meng Y X, et al. Double percolation phenomenon in electrical conductive composites and its application [J]. Polym. Bull., 2002, (3): 69
雷忠利, 戚长谋, 孟雅新等. 导电复合材料中的双逾渗行为及其应用 [J]. 高分子通报, 2002, (3): 69
22 Xiu S X, Zou J Y, He J J. Effect of micro-features on macro-properties of CuCr contact material [J]. High Voltage Appar., 2000, 36(3): 40
修士新, 邹积岩, 何俊佳. CuCr触头材料微观特性对其宏观性能的影响 [J]. 高压电器, 2000, 36(3): 40
23 Zhang Z W, Hou W L, Wang Y H, et al. Notice of retraction: Microstructure evolution of Ag/SnO2 electrical contact materials via severe plastic deformation [A]. Proceedings of the 2010 International Conference on Future Information Technology and Management Engineering [C]. Changzhou, China: IEEE, 2010: 214
24 Tsuji K, Inada H, Kojima K, et al. Manufacturing process and material characteristics of Ag-Ni contacts consisting of nickel-compounded particles [J]. J. Mater. Sci., 1992, 27: 1179
25 Lin Z J. Microstructure control and properties of Ag-SnO2 and Ag-Ni electrical contact materials [D]. Shenyang: Northeastern University, 2016
林智杰. Ag-SnO2和Ag-Ni电触头材料微结构调控与性能研究 [D]. 沈阳: 东北大学, 2016
26 Suresh S, Mortensen A. Functionally graded metals and metal-ceramic composites: Part 2 Thermomechanical behaviour [J]. Int. Mater. Rev., 1997, 42: 85
27 Gibson L J, Ashby M F. Cellular Solids: Structure and Properties [M]. 2nd Ed., Cambridge: Cambridge University Press, 1997: 58
28 Li S J, Xu Q S, Wang Z, et al. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method [J]. Acta Biomater., 2014, 10: 4537
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!