|
|
Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials |
LI Tianxin1, LU Yiping1,2( ), CAO Zhiqiang1, WANG Tongmin1, LI Tingju1 |
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610014, China |
|
Cite this article:
LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials. Acta Metall Sin, 2021, 57(1): 42-54.
|
Abstract Exploitation of traditional reactor structural materials tends to limits; thus, the development of novel materials is urgent. Alloying has long been used to obtain materials with desirable properties. In recent decades, a new alloying technique that combines multiple principal elements in high concentrations to fabricate new materials, termed high-entropy alloys (HEAs), has gained popularity. Refractory HEAs (RHEAs) consist of several principle refractory elements and are an important subset of HEAs. RHEAs have attracted immense attention owing to their unique mechanical, physical, and chemical properties, particularly their excellent high-temperature mechanical properties and radiation resistance. RHEAs are expected to be utilized in cladding materials for fourth-generation fission reactors and plasma-facing materials for fusion reactors. Combined with representative literature, this paper focuses on mechanical, radiation resistance, and oxidation resistance properties of RHEAs. Further, strengthening and radiation resistance mechanisms of RHEAs are explored, and the development evolution and prospects of RHEAs are proposed.
|
Received: 06 August 2020
|
|
Fund: National Magnetic Confinement Fusion Energy Research and Development Program(2018YFE-0312400);National Natural Science Foundation of China(51822402);National Key Research and Development Program of China(2019YFA0209901);Liao Ning Revitalization Talents Program(XLYC1807047);Fund of Science and Technology on Reactor Fuel and Materials Laboratory(6142A06190304);Fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201902) |
1 |
Carlson K, Gardner L, Moon J, et al. Molten salt reactors and electrochemical reprocessing: Synthesis and chemical durability of potential waste forms for metal and salt waste streams [J]. Int. Mater. Rev., 2020, doi: 10.1080/09506608.2020.1801229
|
2 |
Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
|
3 |
Kim J S, Kim T H, Kim K M, et al. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions [J]. Nucl. Eng. Technol., 2020, 52: 1742
|
4 |
Narukawa T, Amaya M. Four-point-bend tests on high-burnup advanced fuel cladding tubes after exposure to simulated LOCA conditions [J]. J. Nucl. Sci. Technol., 2020, 57: 782
|
5 |
Liu F, Luo G N, Li Q, et al. Application of tungsten as a plasma-facing material in nuclear fusion reactors [J]. China Tungsten Ind., 2017, 32(2): 41
|
|
刘 凤, 罗广南, 李 强等. 钨在核聚变反应堆中的应用研究 [J]. 中国钨业, 2017, 32(2): 41
|
6 |
Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55
|
7 |
Umretiya R V, Vargas S, Galeano D, et al. Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material [J]. J. Nucl. Mater., 2020, 535: 152163
|
8 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
9 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
10 |
Laube S, Chen H, Kauffmann A, et al. Controlling crystallographic ordering in Mo-Cr-Ti-Al high entropy alloys to enhance ductility [J]. J. Alloys Compd., 2020, 823: 153805
|
11 |
Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
|
12 |
Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
|
13 |
Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
|
14 |
Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading [J]. Intermetallics, 2020, 121: 106699
|
15 |
Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
|
16 |
Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
|
17 |
Yan J H, Li M J, Li K L, et al. Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys [J]. J. Mater. Eng. Perform., 2020, 29: 2125
|
18 |
Yan D L, Song K K, Sun H G, et al. Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
|
19 |
Xiang L, Guo W M, Liu B, et al. Microstructure and mechanical properties of TaNbVTiAlx refractory high-entropy alloys [J]. Entropy, 2020, 22: 282
|
20 |
Xiang C, Fu H M, Zhang Z M, et al. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys [J]. J. Alloys Compd., 2020, 818: 153352
|
21 |
Soni V, Senkov O N, Couzinie J P, et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100569
|
22 |
Chang S, Tseng K K, Yang T Y, et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
|
23 |
Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
|
24 |
Kareer A, Waite J C, Li B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’ [J]. J. Nucl. Mater., 2019, 526: 151744
|
25 |
El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
|
26 |
Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
|
27 |
Osei-Agyemang E, Balasubramanian G. Surface oxidation mechanism of a refractory high-entropy alloy [J]. npj Mater. Degrad., 2019, 3: 20
|
28 |
Müeller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
|
29 |
Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
|
30 |
Niu Z Z, Xu J, Wang T, et al. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x=0, 0.2, 0.5) high entropy alloys [J]. Intermetallics, 2019, 112: 106550
|
31 |
Hung S B, Wang C J, Chen Y Y, et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
|
32 |
Montero J, Ek G, Laversenne L, et al. Hydrogen storage properties of the refractory Ti-V-Zr-Nb-Ta multi-principal element alloy [J]. J. Alloys Compd., 2020, 835: 155376
|
33 |
Hu J T, Zhang J J, Xiao H Y, et al. A density functional theory study of the hydrogen absorption in high entropy alloy TiZrHfMoNb [J]. Inorg. Chem., 2020, 59: 4782
|
34 |
Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi [J]. Scr. Mater., 2020, 178: 387
|
35 |
De Marco M O, Li Y T, Li H W, et al. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy [J]. Adv. Eng. Mater., 2020, 22: 1901079
|
36 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
37 |
Yin W H, Tang H P. Materials and Engineering Applications in Refractory Metal Materials [M]. Beijing: Metallurgical Industry Press, 2012: 108
|
|
殷为宏, 汤慧萍. 难熔金属材料与工程应用 [M]. 北京: 冶金工业出版社, 2012: 108
|
38 |
Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
|
39 |
Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
|
40 |
Wu Y D, Cai Y H, Wang J J, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
|
41 |
Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256
|
42 |
Long Y, Liang X B, Su K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
|
43 |
Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
|
44 |
Liu Q, Wang G F, Sui X C, et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35: 2600
|
45 |
Chen W K, Li Y K, Chen Y W. High compressibility ZrTiHf-V0.5Nb0.5Cx refractory high-entropy alloys [J]. Mater. Sci. Forum, 2019, 944: 163
|
46 |
Wang S P, Ma E, Xu J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution [J]. Intermetallics, 2019, 107: 15
|
47 |
Wang L, Fu C, Wu Y D, et al. Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning [J]. Mater. Sci. Eng., 2019, A763: 138147
|
48 |
Xu Z Q, Ma Z L, Wang M, et al. Design of novel low-density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
|
49 |
Wang M, Ma Z L, Xu Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys [J]. J. Alloys Compd., 2019, 803: 778
|
50 |
Yang C, Aoyagi K, Bian H K, et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
|
51 |
Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
|
52 |
Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
|
53 |
Rao S I, Antillon E, Woodward C, et al. Solution hardening in body-centered cubic quaternary alloys interpreted using Suzukis kink-solute interaction model [J]. Scr. Mater., 2019, 165: 103
|
54 |
Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
|
55 |
Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
|
56 |
Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
|
57 |
Tsai M H, Chang K C, Li J H, et al. A second criterion for sigma phase formation in high-entropy alloys [J]. Mater. Res. Lett., 2016, 4: 90
|
58 |
Yang S G, Lu J, Xing F Z, et al. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design—A case study with Al-Co-Cr-Fe-Ni system [J]. Acta Mater., 2020, 192: 11
|
59 |
Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
|
60 |
Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
|
61 |
Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41: 659
|
62 |
Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: Experiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
|
63 |
Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
|
64 |
George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
|
65 |
Lü Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
|
|
吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
|
66 |
Seeger A. LXV. On the theory of the low-temperature internal friction peak observed in metals [J]. Philos. Mag., 1956, 1: 651
|
67 |
Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
|
68 |
Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
|
69 |
Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
|
70 |
Zhang L C, Xiang Y, Han J, et al. The effect of randomness on the strength of high-entropy alloys [J]. Acta Mater., 2019, 166: 424
|
71 |
Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
|
72 |
Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Sci. Rep., 2018, 8: 8816
|
73 |
Soni V, Gwalani B, Senkov O N, et al. Phase stability as a function of temperature in a refractory high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3235
|
74 |
Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy [J]. Acta Mater., 2020, 185: 89
|
75 |
Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
|
76 |
Lu C Y, Yang T N, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys [J]. Acta Mater., 2017, 127: 98
|
77 |
Yang T N, Lu C Y, Jin K, et al. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys [J]. J. Nucl. Mater., 2017, 488: 328
|
78 |
Lu C Y, Yang T N, Jin K, et al. Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations [J]. Mater. Res. Lett., 2018, 6: 584
|
79 |
Lu C Y, Yang T N, Niu L L, et al. Interstitial migration behavior and defect evolution in ion irradiated pure nickel and Ni-xFe binary alloys [J]. J. Nucl. Mater., 2018, 509: 237
|
80 |
Yang T N, Lu C Y, Velisa G, et al. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd [J]. Scr. Mater., 2019, 158: 57
|
81 |
Sadeghilaridjani M, Muskeri S, Pole M, et al. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette [J]. Entropy, 2020, 22: 230
|
82 |
Lü Z. Development and prospect of nano-structured ODS steels for fusion reactor first wall application [J]. Atomic Energy Sci. Technol., 2011, 45: 1105
|
|
吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45: 1105
|
83 |
Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy [J]. J. Nucl. Mater., 2020, 529: 151955
|
84 |
Patel D, Richardson M D, Jim B, et al. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04 [J]. J. Nucl. Mater., 2020, 531: 152005
|
85 |
Moschetti M, Xu A, Schuh B, et al. On the room-temperature mechanical properties of an ion-irradiated TiZrNbHfTa refractory high entropy alloy [J]. JOM, 2020, 72(1): 130
|
86 |
Nagase T, Anada S, Rack P D, et al. MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio [J]. Intermetallics, 2013, 38: 70
|
87 |
Liang W, Yang J J, Zhang F F, et al. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures [J]. J. Nucl. Mater., 2018, 501: 388
|
88 |
Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
|
89 |
Aidhy D S, Lu C Y, Jin K, et al. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments [J]. Acta Mater., 2015, 99: 69
|
90 |
Fan Z, Zhao S J, Jin K, et al. Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys [J]. Acta Mater., 2019, 164: 283
|
91 |
Zhao S J, Egami T, Stocks G M, et al. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys [J]. Phys. Rev. Mater., 2018, 2: 013602
|
92 |
Zhao S J, Stocks G M, Zhang Y W. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 [J]. Phys. Chem. Chem. Phys., 2016, 18: 24043
|
93 |
Wang Z J, Liu C T, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 043601
|
94 |
Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
|
95 |
Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
|
96 |
Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
|
97 |
Gorr B, Müeller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
|
98 |
Cao Y K, Liu Y, Liu B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1476
|
99 |
Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|