Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 42-54    DOI: 10.11900/0412.1961.2020.00293
Overview Current Issue | Archive | Adv Search |
Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials
LI Tianxin1, LU Yiping1,2(), CAO Zhiqiang1, WANG Tongmin1, LI Tingju1
1.Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610014, China
Cite this article: 

LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials. Acta Metall Sin, 2021, 57(1): 42-54.

Download:  HTML  PDF(4600KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Exploitation of traditional reactor structural materials tends to limits; thus, the development of novel materials is urgent. Alloying has long been used to obtain materials with desirable properties. In recent decades, a new alloying technique that combines multiple principal elements in high concentrations to fabricate new materials, termed high-entropy alloys (HEAs), has gained popularity. Refractory HEAs (RHEAs) consist of several principle refractory elements and are an important subset of HEAs. RHEAs have attracted immense attention owing to their unique mechanical, physical, and chemical properties, particularly their excellent high-temperature mechanical properties and radiation resistance. RHEAs are expected to be utilized in cladding materials for fourth-generation fission reactors and plasma-facing materials for fusion reactors. Combined with representative literature, this paper focuses on mechanical, radiation resistance, and oxidation resistance properties of RHEAs. Further, strengthening and radiation resistance mechanisms of RHEAs are explored, and the development evolution and prospects of RHEAs are proposed.

Key words:  refractory high-entropy alloy      mechanical property      radiation resistance      oxidation resistance     
Received:  06 August 2020     
ZTFLH:  TG132.3  
Fund: National Magnetic Confinement Fusion Energy Research and Development Program(2018YFE-0312400);National Natural Science Foundation of China(51822402);National Key Research and Development Program of China(2019YFA0209901);Liao Ning Revitalization Talents Program(XLYC1807047);Fund of Science and Technology on Reactor Fuel and Materials Laboratory(6142A06190304);Fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201902)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00293     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/42

Fig.1  Difference between the design of conventional alloys and high-entropy alloys on a ternary plot
Fig.2  Yield strengths of model refractory high-entropy alloys and nickel-based superalloys, molybdenum-based alloys, tantalum-based alloys, niobium-based alloys at different temperatures (The strength of Mo-20W-0.1Zr-0.1Ti alloy is tensile strength, and the strengths of other alloys are yield strengths)[36-39]

Alloy

composition

Phase

structure

T / oCσ0.2 / MPaε / %

Equilibrium

condition

TaNbHfZrTi[43]bccRTC929>50.0HIP+A
TaNbHfZrTiMo0.75[14]bccRTC1370>50.0AC
MoNbTaTiV[44]bccRTC220824.9SPS
NbMoTaWVCr[42]bcc+ LavesRTC34165.3SPS
ZrTiHfV0.5Nb0.5C0.2[45]bcc+HfCRTC955>40.0AC
HfNbTa[46]bccRTT84710.0AC
NbZrTiTa[41]bcc+bctRTT65714.4HIP+A
HfNbTiZr[40]bcc+hcpRTT87914.9A
Ti48Zr20Hf15Al10Nb7[47]bccRTT90435.0A
Ti30Al20V20Nb20Mo10[48]bcc800C62430.0AC
TaNbHfZrTiMoW[49]bcc1+bcc21200C703>35.0AC
TaNbHfZrTi[50]bcc1200C356>50.0AC
VNbMoTaW[36]bcc1600C477>10.0AC
NbMoTaW[36]bcc1600C405>10.0AC
Table 1  Brief summaries of yield strength (σ0.2), plastic strain (ε), temperature (T), phase structure, alloys composition (mole fraction) and equilibrium condition[14,36,40-50]
Fig.3  Yield strength at 1200oC (σ0.21200) of single-phase (S) and multi-phase (M) refractory high-entropy alloys as a function of the melting temperature (Tm)[11]
Fig.4  Separation of ductile and brittle refractory high-entropy alloys by the valence electron concentration[59]
Fig.5  Yield strength, prediction by Labusch model vs experiment, for a range of refractory high-entropy alloys[64]
Fig.6  Yield strength, prediction by Maresca et al. model and experiments, vs temperature[68]
Fig.7  STEM-HAADF images and the fast Fourier transforms of AlMo0.5NbTa0.5TiZr showing cuboidal precipitates of a disordered bcc phase are separated by ordered B2 phase for the dark channels[39]
Fig.8  Average nanoindentation hardness vs the indentation depth (a) and variation of lattice parameter vs irradiation dose (b) for irradiated Ti2ZrHfV0.5Mo0.2 alloys at different ion doses[23]
AlloyEmV / eVEmI/ eV
Ni[92]1.010.11
Ni0.8Fe0.2[90]0.67-1.30 (0.99)0.07-0.44 (0.23)
NiFe[92]0.56-1.71 (0.90)0.01-0.95 (0.30)
NiCo[92]1.04-1.25 (1.16)0.16-0.38 (0.23)
NiCoCr[91]0.34-1.23 (0.94)0.01-0.58 (0.24)
NiCoFeCr[91]0.31-1.36 (0.83)0.00-0.69 (0.31)
Table 2  Density functional theory calculated defect migration energy in different alloys[90-92]
Fig.9  Trajectories of an interstitial cluster in various alloys[75]
Fig.10  Generalized oxidation kinetics scheme of alloys with different oxides[99]
1 Carlson K, Gardner L, Moon J, et al. Molten salt reactors and electrochemical reprocessing: Synthesis and chemical durability of potential waste forms for metal and salt waste streams [J]. Int. Mater. Rev., 2020, doi: 10.1080/09506608.2020.1801229
2 Zinkle S J, Busby J T. Structural materials for fission & fusion energy [J]. Mater. Today, 2009, 12: 12
3 Kim J S, Kim T H, Kim K M, et al. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions [J]. Nucl. Eng. Technol., 2020, 52: 1742
4 Narukawa T, Amaya M. Four-point-bend tests on high-burnup advanced fuel cladding tubes after exposure to simulated LOCA conditions [J]. J. Nucl. Sci. Technol., 2020, 57: 782
5 Liu F, Luo G N, Li Q, et al. Application of tungsten as a plasma-facing material in nuclear fusion reactors [J]. China Tungsten Ind., 2017, 32(2): 41
刘 凤, 罗广南, 李 强等. 钨在核聚变反应堆中的应用研究 [J]. 中国钨业, 2017, 32(2): 41
6 Zinkle S J, Ghoniem N M. Operating temperature windows for fusion reactor structural materials [J]. Fusion Eng. Des., 2000, 51-52: 55
7 Umretiya R V, Vargas S, Galeano D, et al. Effect of surface characteristics and environmental aging on wetting of Cr-coated Zircaloy-4 accident tolerant fuel cladding material [J]. J. Nucl. Mater., 2020, 535: 152163
8 Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
9 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
10 Laube S, Chen H, Kauffmann A, et al. Controlling crystallographic ordering in Mo-Cr-Ti-Al high entropy alloys to enhance ductility [J]. J. Alloys Compd., 2020, 823: 153805
11 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
12 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
13 Zhu M, Yao L J, Liu Y Q, et al. Microstructure evolution and mechanical properties of a novel CrNbTiZrAlx (0.25≤x≤1.25) eutectic refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127869
14 Zhang S, Wang Z, Yang H J, et al. Ultra-high strain-rate strengthening in ductile refractory high entropy alloys upon dynamic loading [J]. Intermetallics, 2020, 121: 106699
15 Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
16 Yurchenko N, Panina E, Tikhonovsky M, et al. Structure and mechanical properties of an in situ refractory Al20Cr10Nb15Ti20V25Zr10 high entropy alloy composite [J]. Mater. Lett., 2020, 264: 127372
17 Yan J H, Li M J, Li K L, et al. Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys [J]. J. Mater. Eng. Perform., 2020, 29: 2125
18 Yan D L, Song K K, Sun H G, et al. Microstructures, mechanical properties, and corrosion behaviors of refractory high-entropy ReTaWNbMo alloys [J]. J. Mater. Eng. Perform., 2020, 29: 399
19 Xiang L, Guo W M, Liu B, et al. Microstructure and mechanical properties of TaNbVTiAlx refractory high-entropy alloys [J]. Entropy, 2020, 22: 282
20 Xiang C, Fu H M, Zhang Z M, et al. Effect of Cr content on microstructure and properties of Mo0.5VNbTiCrx high-entropy alloys [J]. J. Alloys Compd., 2020, 818: 153352
21 Soni V, Senkov O N, Couzinie J P, et al. Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40 [J]. Materialia, 2020, 9: 100569
22 Chang S, Tseng K K, Yang T Y, et al. Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy [J]. Mater. Lett., 2020, 272: 127832
23 Lu Y P, Huang H F, Gao X Z, et al. A promising new class of irradiation tolerant materials: Ti2ZrHfV0.5Mo0.2 high-entropy alloy [J]. J. Mater. Sci. Technol., 2019, 35: 369
24 Kareer A, Waite J C, Li B, et al. Short communication: ‘Low activation, refractory, high entropy alloys for nuclear applications’ [J]. J. Nucl. Mater., 2019, 526: 151744
25 El-Atwani O, Li N, Li M, et al. Outstanding radiation resistance of tungsten-based high-entropy alloys [J]. Sci. Adv., 2019, 5: eaav2002
26 Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
27 Osei-Agyemang E, Balasubramanian G. Surface oxidation mechanism of a refractory high-entropy alloy [J]. npj Mater. Degrad., 2019, 3: 20
28 Müeller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
29 Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
30 Niu Z Z, Xu J, Wang T, et al. Microstructure, mechanical properties and corrosion resistance of CoCrFeNiWx (x=0, 0.2, 0.5) high entropy alloys [J]. Intermetallics, 2019, 112: 106550
31 Hung S B, Wang C J, Chen Y Y, et al. Thermal and corrosion properties of V-Nb-Mo-Ta-W and V-Nb-Mo-Ta-W-Cr-B high entropy alloy coatings [J]. Surf. Coat. Technol., 2019, 375: 802
32 Montero J, Ek G, Laversenne L, et al. Hydrogen storage properties of the refractory Ti-V-Zr-Nb-Ta multi-principal element alloy [J]. J. Alloys Compd., 2020, 835: 155376
33 Hu J T, Zhang J J, Xiao H Y, et al. A density functional theory study of the hydrogen absorption in high entropy alloy TiZrHfMoNb [J]. Inorg. Chem., 2020, 59: 4782
34 Edalati P, Floriano R, Mohammadi A, et al. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi [J]. Scr. Mater., 2020, 178: 387
35 De Marco M O, Li Y T, Li H W, et al. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy [J]. Adv. Eng. Mater., 2020, 22: 1901079
36 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
37 Yin W H, Tang H P. Materials and Engineering Applications in Refractory Metal Materials [M]. Beijing: Metallurgical Industry Press, 2012: 108
殷为宏, 汤慧萍. 难熔金属材料与工程应用 [M]. 北京: 冶金工业出版社, 2012: 108
38 Chen H, Kauffmann A, Gorr B, et al. Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al [J]. J. Alloys Compd., 2016, 661: 206
39 Senkov O N, Isheim D, Seidman D N, et al. Development of a refractory high entropy superalloy [J]. Entropy, 2016, 18: 102
40 Wu Y D, Cai Y H, Wang J J, et al. A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties [J]. Mater. Lett., 2014, 130: 277
41 Wang R X, Tang Y, Li S, et al. Novel metastable engineering in single-phase high-entropy alloy [J]. Mater. Des., 2019, 162: 256
42 Long Y, Liang X B, Su K, et al. A fine-grained NbMoTaWVCr refractory high-entropy alloy with ultra-high strength: Microstructural evolution and mechanical properties [J]. J. Alloys Compd., 2019, 780: 607
43 Senkov O N, Scott J M, Senkova S V, et al. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy [J]. J. Alloys Compd., 2011, 509: 6043
44 Liu Q, Wang G F, Sui X C, et al. Microstructure and mechanical properties of ultra-fine grained MoNbTaTiV refractory high-entropy alloy fabricated by spark plasma sintering [J]. J. Mater. Sci. Technol., 2019, 35: 2600
45 Chen W K, Li Y K, Chen Y W. High compressibility ZrTiHf-V0.5Nb0.5Cx refractory high-entropy alloys [J]. Mater. Sci. Forum, 2019, 944: 163
46 Wang S P, Ma E, Xu J. New ternary equi-atomic refractory medium-entropy alloys with tensile ductility: Hafnium versus titanium into NbTa-based solution [J]. Intermetallics, 2019, 107: 15
47 Wang L, Fu C, Wu Y D, et al. Ductile Ti-rich high-entropy alloy controlled by stress induced martensitic transformation and mechanical twinning [J]. Mater. Sci. Eng., 2019, A763: 138147
48 Xu Z Q, Ma Z L, Wang M, et al. Design of novel low-density refractory high entropy alloys for high-temperature applications [J]. Mater. Sci. Eng., 2019, A755: 318
49 Wang M, Ma Z L, Xu Z Q, et al. Microstructures and mechanical properties of HfNbTaTiZrW and HfNbTaTiZrMoW refractory high-entropy alloys [J]. J. Alloys Compd., 2019, 803: 778
50 Yang C, Aoyagi K, Bian H K, et al. Microstructure evolution and mechanical property of a precipitation-strengthened refractory high-entropy alloy HfNbTaTiZr [J]. Mater. Lett., 2019, 254: 46
51 Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys [J]. Mater. Sci. Eng., 2018, A712: 380
52 Senkov O N, Miracle D B, Chaput K J, et al. Development and exploration of refractory high entropy alloys—A review [J]. J. Mater. Res., 2018, 33: 3092
53 Rao S I, Antillon E, Woodward C, et al. Solution hardening in body-centered cubic quaternary alloys interpreted using Suzuki􀆳s kink-solute interaction model [J]. Scr. Mater., 2019, 165: 103
54 Rao S I, Akdim B, Antillon E, et al. Modeling solution hardening in BCC refractory complex concentrated alloys: NbTiZr, Nb1.5TiZr0.5 and Nb0.5TiZr1.5 [J]. Acta Mater., 2019, 168: 222
55 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109: 103505
56 Guo S, Liu C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase [J]. Prog. Nat. Sci.: Mater. Int., 2011, 21: 433
57 Tsai M H, Chang K C, Li J H, et al. A second criterion for sigma phase formation in high-entropy alloys [J]. Mater. Res. Lett., 2016, 4: 90
58 Yang S G, Lu J, Xing F Z, et al. Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design—A case study with Al-Co-Cr-Fe-Ni system [J]. Acta Mater., 2020, 192: 11
59 Sheikh S, Shafeie S, Hu Q, et al. Alloy design for intrinsically ductile refractory high-entropy alloys [J]. J. Appl. Phys., 2016, 120: 164902
60 Qi L, Chrzan D C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys [J]. Phys. Rev. Lett., 2014, 112: 115503
61 Labusch R. A statistical theory of solid solution hardening [J]. Phys. Status Solidi, 1970, 41: 659
62 Yao H W, Qiao J W, Hawk J A, et al. Mechanical properties of refractory high-entropy alloys: Experiments and modeling [J]. J. Alloys Compd., 2017, 696: 1139
63 Toda-Caraballo I, Rivera-Díaz-Del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
64 George E P, Curtin W A, Tasan C C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms [J]. Acta Mater., 2020, 188: 435
65 Lü Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54: 1553
吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54: 1553
66 Seeger A. LXV. On the theory of the low-temperature internal friction peak observed in metals [J]. Philos. Mag., 1956, 1: 651
67 Maresca F, Curtin W A. Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys [J]. Acta Mater., 2020, 182: 144
68 Maresca F, Curtin W A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900 K [J]. Acta Mater., 2020, 182: 235
69 Rao S I, Varvenne C, Woodward C, et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy [J]. Acta Mater., 2017, 125: 311
70 Zhang L C, Xiang Y, Han J, et al. The effect of randomness on the strength of high-entropy alloys [J]. Acta Mater., 2019, 166: 424
71 Chen B, Li S Z, Zong H X, et al. Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J]. Proc. Natl. Acad. Sci. USA, 2020, 117: 16199
72 Soni V, Senkov O N, Gwalani B, et al. Microstructural design for improving ductility of an initially brittle refractory high entropy alloy [J]. Sci. Rep., 2018, 8: 8816
73 Soni V, Gwalani B, Senkov O N, et al. Phase stability as a function of temperature in a refractory high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3235
74 Soni V, Gwalani B, Alam T, et al. Phase inversion in a two-phase, BCC+B2, refractory high entropy alloy [J]. Acta Mater., 2020, 185: 89
75 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
76 Lu C Y, Yang T N, Jin K, et al. Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys [J]. Acta Mater., 2017, 127: 98
77 Yang T N, Lu C Y, Jin K, et al. The effect of injected interstitials on void formation in self-ion irradiated nickel containing concentrated solid solution alloys [J]. J. Nucl. Mater., 2017, 488: 328
78 Lu C Y, Yang T N, Jin K, et al. Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations [J]. Mater. Res. Lett., 2018, 6: 584
79 Lu C Y, Yang T N, Niu L L, et al. Interstitial migration behavior and defect evolution in ion irradiated pure nickel and Ni-xFe binary alloys [J]. J. Nucl. Mater., 2018, 509: 237
80 Yang T N, Lu C Y, Velisa G, et al. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd [J]. Scr. Mater., 2019, 158: 57
81 Sadeghilaridjani M, Muskeri S, Pole M, et al. High-temperature nano-indentation creep of reduced activity high entropy alloys based on 4-5-6 elemental palette [J]. Entropy, 2020, 22: 230
82 Lü Z. Development and prospect of nano-structured ODS steels for fusion reactor first wall application [J]. Atomic Energy Sci. Technol., 2011, 45: 1105
吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45: 1105
83 Sadeghilaridjani M, Ayyagari A, Muskeri S, et al. Ion irradiation response and mechanical behavior of reduced activity high entropy alloy [J]. J. Nucl. Mater., 2020, 529: 151955
84 Patel D, Richardson M D, Jim B, et al. Radiation damage tolerance of a novel metastable refractory high entropy alloy V2.5Cr1.2WMoCo0.04 [J]. J. Nucl. Mater., 2020, 531: 152005
85 Moschetti M, Xu A, Schuh B, et al. On the room-temperature mechanical properties of an ion-irradiated TiZrNbHfTa refractory high entropy alloy [J]. JOM, 2020, 72(1): 130
86 Nagase T, Anada S, Rack P D, et al. MeV electron-irradiation-induced structural change in the bcc phase of Zr-Hf-Nb alloy with an approximately equiatomic ratio [J]. Intermetallics, 2013, 38: 70
87 Liang W, Yang J J, Zhang F F, et al. Improved irradiation tolerance of reactive gas pulse sputtered TiN coatings with a hybrid architecture of multilayered and compositionally graded structures [J]. J. Nucl. Mater., 2018, 501: 388
88 Zhang Y W, Stocks G M, Jin K, et al. Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys [J]. Nat. Commun., 2015, 6: 8736
89 Aidhy D S, Lu C Y, Jin K, et al. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments [J]. Acta Mater., 2015, 99: 69
90 Fan Z, Zhao S J, Jin K, et al. Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys [J]. Acta Mater., 2019, 164: 283
91 Zhao S J, Egami T, Stocks G M, et al. Effect of d electrons on defect properties in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys [J]. Phys. Rev. Mater., 2018, 2: 013602
92 Zhao S J, Stocks G M, Zhang Y W. Defect energetics of concentrated solid-solution alloys from ab initio calculations: Ni0.5Co0.5, Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 [J]. Phys. Chem. Chem. Phys., 2016, 18: 24043
93 Wang Z J, Liu C T, Dou P. Thermodynamics of vacancies and clusters in high-entropy alloys [J]. Phys. Rev. Mater., 2017, 1: 043601
94 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300oC of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20: 1700948
95 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
96 Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
97 Gorr B, Müeller F, Azim M, et al. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition [J]. Oxid. Met., 2017, 88: 339
98 Cao Y K, Liu Y, Liu B, et al. Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys [J]. Trans. Nonferrous Met. Soc. China, 2019, 29: 1476
99 Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
No Suggested Reading articles found!