Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 55-70    DOI: 10.11900/0412.1961.2020.00413
Overview Current Issue | Archive | Adv Search |
Precipitation Modeling via the Synergy of Thermodynamics and Kinetics
LIU Feng1,2(), WANG Tianle1
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University ;Xi'an 710072, China
2.Analytical & Testing Center, Northwestern Polytechnical University ;Xi'an 710072, China
Cite this article: 

LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics. Acta Metall Sin, 2021, 57(1): 55-70.

Download:  HTML  PDF(4502KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to the critical role precipitation hardening plays in the improved mechanical performance of metals, understanding the formation mechanisms of precipitates is significant for the rational control of the corresponding and correlated effects. From the perspective of the synergetic variation of thermodynamics and kinetics, the current work briefly reviews the mesoscale methods for precipitation modeling based on the computational thermodynamics of CALPHAD (including the DICTRA simulation, Kampmann-Wagner numerical model, Svoboda-Fischer-Fratzl-Kozeschnik model, and diffusion field cell model) and the multiscale methods based on first-principles calculations (including the phase field model and multiscale structural modeling using the Fokker-Planck equation). On this basis, the research and development of precipitation modeling for heat-treated metals is discussed in detail.

Key words:  precipitate      thermodynamics      kinetics      structural modeling     
Received:  16 October 2020     
ZTFLH:  TG113.12  
Fund: National Key Research and Development Program of China(2017YFB0703001);National Natural Science Foundation of China(51134011);China Postdoctoral Science Foundation(2018M643729);Natural Science Basic Research Plan in Shaanxi Province(2019JQ-091);Research Fund of the State Key Laboratory of Solidification Processing(2019-TZ-01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00413     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/55

Fig.1  Schematic representation of the Gibbs energy changes associated with precipitate formation as a function of their radius R in the classical nucleation theory (ΔG* is the nucleation barrier, R* is the critical radius for stable precipitates, RkBT* is the radius at which stable precipitates nucleate, Z is the Zeldovich factor, kB is the Boltzmann constant and T is the temperature)[11]
Fig.2  Work flow for DICTRA simulation[37]
Fig.3  Three-cell simulation of competitive growth of stable M23C6 and of metastable M7C3 and M3C (M represents the substitutional alloying elements) in Fe-12Cr-0.1C at 1053 K (μi—chemical potential of component i)[39]
Fig.4  Log-normal particle size distribution with a mean particle radius Rˉ (Particles with radius R<R* are continuously dissolving in the matrix. In the Langer and Schwartz approach, only the hatched area with particle radius R>R* contributes to the mean particle radius RˉLS. Rˉ is the mean radius for the full log-normal distribution, RˉLS is the mean radius of the stable particles (R>R*), f(R) is the particle size distribution and fa(R*) is the density of the particles with the critical nucleation size)[46]
Fig.5  Growth of precipitates in the “Euler-like approach” (At each time step, fluxes between each neighboring classes are calculated. N is the number of particles in a specific size class, and dRdt is the growth rate)[11]
Fig.6  The obtained precipitation sequences in a Fe-Mn-Si-Cr-Mo-Ti-C system at 600℃ via SFFK model using different interface energies[29]
Fig.7  Schematic of the multiscale model, showing different constituent models and their links along with their associated length scales (Fvibrational—free energy contributed from lattice vibration, Fconfigurational—configurational free energy)[93]
Fig.8  Phase-field simulation using thermodynamic parameters from first principles, showing θ' morphologies obtained with different anisotropic contributions[94]
Fig.9  Schematic of an integrable deep neural network (Xk is the k-th input parameter, Y is the output of deep neural network, ?Y?Xk is the output of integrable deep neural network, α and β are adjustable parameters of the hidden layers)[98]
Fig.10  The size evolution of θ' at 473 K (a) and the precipitation sequence, i.e. GP zone→θ"θ' (b) in Al-2%Cu (atomic fraction) alloy (The abbreviations FP, MD, FPE, and PFM represent first-principles, molecular dynamics, Fokker-Planck equation, and phase field method, respectively)[30]
Fig.11  Evolution for the energy of system and the number of primary building units (PBUs) in carbides during precipitations of ε-Fe2C, η-Fe2C, and θ-Fe3C in Fe-2%C (atomic fraction) alloy precipitated at 473 K (τ1 represents the moment for ε-Fe2C→η-Fe2C transition corresponding to the point o, and τ2 represents the time needed for η-Fe2C to grow to the same size as ε-Fe2C corresponding to the points F and Z)[58]
Fig.12  Variations of the driving force (thermodynamics) and energy barrier (kinetics) with respect to the number of PBUs in precipitates and temperature for precipitations of ε-Fe2C and η-Fe2C[58]
1 Liu F, Wang K. Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels [J]. Acta Metall. Sin., 2016, 52: 1326
刘 峰, 王 慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326
2 Wang K, Shang S L, Wang Y, et al. Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study [J]. Acta Mater., 2018, 147: 261
3 Liu Z K. Ocean of data: Integrating first-principles calculations and CALPHAD modeling with machine learning [J]. J. Phase Equilib. Diffus., 2018, 39: 635
4 Luo Q, Chen H C, Chen W, et al. Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
5 Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864
6 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
7 de Pablo J J, Jones B, Kovacs C L, et al. The materials genome initiative, the interplay of experiment, theory and computation [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 99
8 de Pablo J J, Jackson N E, Webb M A, et al. New frontiers for the materials genome initiative [J]. npj Comput. Mater., 2019, 5: 41
9 Wagner R, Kampmann R, Voorhees P W. Homogeneous second-phase precipitation [A]. Phase Transformations in Materials [M]. New York: Wiley-VCH, 2001
10 Svoboda J, Turek I, Fischer F D. Application of the thermodynamic extremal principle to modeling of thermodynamic processes in material sciences [J]. Philos. Mag., 2005, 85: 3699
11 Perez M, Dumont M, Acevedo-Reyes D. Implementation of classical nucleation and growth theories for precipitation [J]. Acta Mater., 2008, 56: 2119
12 Volmer M, Weber A. Keimbildung in übersӓttigten gebilden [J]. Z. Phys. Chem., 1926, 119: 277
13 Becker R, Döring W. Kinetische behandlung der keimbildung in übersättigten dämpfen [J]. Ann. Phys., 1935, 416: 719
14 Zeldovich Y B. On the theory of new phase formation: Cavitation [J]. Acta Physicochim., 1943, 18: 1
15 Russell K C. Phase Transformations [M]. Ohio: American Society for Metals, 1968: 219
16 Kampmann R, Wagner R. Kinetics of precipitation in metastable binary alloys—Theory and application to Cu-1.9 at % Ti and Ni-14 at % Al [A]. Decomposition of Alloys: The Early Stages [M]. Oxford, U.K.: Pergamon Press, 1984: 91
17 Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20: 950
18 Perez M. Gibbs-Thomson effects in phase transformations [J]. Scr. Mater., 2005, 52: 709
19 Voorhees P W. The theory of Ostwald ripening [J]. J. Stat. Phys., 1985, 38: 231
20 Lifchitz I M, Slyosov V V. The kinetics of precipitation from supersaturated solid solutions [J]. J. Phys. Chem. Solids, 1961, 19: 35
21 Wagner C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [J]. Z. Elektrochem., 1961, 65: 581
22 Onsager L. Reciprocal relations in irreversible processes. I [J]. Phys. Rev., 1931, 37: 405
23 Ziegler H. Some extremum principles in irreversible thermodynamics with applications to continuum mechanics [A]. Progress in Solid Mechanics [M]. Amsterdam: North-Holland, 1963: 1
24 Ziegler H. An Introduction to Thermomechanics [M]. Amsterdam: North-Holland, 1977: 1
25 Fischer F D, Svoboda J, Petryk H. Thermodynamic extremal principles for irreversible processes in materials science [J]. Acta Mater., 2014, 67: 1
26 Hackl K, Fischer F D. On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials [J]. Proc. Roy. Soc., 2008, 464A: 117
27 Fischer F D, Svoboda J. Thermodynamic treatment of diffusive phase transformation (reactive diffusion) [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 391
28 Svoboda J, Fischer F D, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: I: Theory [J]. Mater. Sci. Eng., 2004, A385: 166
29 Kozeschnik E, Svoboda J, Fratzl P, et al. Modelling of kinetics in multi-component multi-phase systems with spherical precipitates: II: Numerical solution and application [J]. Mater. Sci. Eng., 2004, A385: 157
30 Wang K, Zhang L, Liu F. Multi-scale modeling of the complex microstructural evolution in structural phase transformations [J]. Acta Mater., 2019, 162: 78
31 Liu Z K. First-principles calculations and CALPHAD modeling of thermodynamics [J]. J. Phase Equilib. Diffus., 2009, 30: 517
32 Saunders N, Miodownik A P. CALPHAD: Calculation of Phase Diagrams: A Comprehensive Guide [M]. Berlin: Pergamon, 1998: 1
33 Kaufman L, Ågren J. CALPHAD, first and second generation—Birth of the materials genome [J]. Scr. Mater., 2014, 70: 3
34 Olson G B, Kuehmann C J. Materials genomics: From CALPHAD to flight [J]. Scr. Mater., 2014, 70: 25
35 Andersson J O, Ågren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J. App. Phys., 1992, 72: 1350
36 Spencer P J. A brief history of CALPHAD [J]. Calphad, 2008, 32: 1
37 Zhang L J, Chen Q. CALPHAD—Type modeling of diffusion kinetics in multicomponent alloys [A]. Handbook of Solid State Diffusion [M]. Amsterdam: Elsevier, 2017: 321
38 Thomson R C. Characterization of carbides in steels using atom probe field-ion microscopy [J]. Mater. Charact., 2000, 44: 219
39 Schneider A, Inden G. Simulation of the kinetics of precipitation reactions in ferritic steels [J]. Acta Mater., 2005, 53: 519
40 Hu X B, Zhang M, Wu X C, et al. Simulations of coarsening behavior for M23C6 carbides in AISI H13 steel [J]. J. Mater. Sci. Technol., 2006, 22: 153
41 Bjärbo A, Hättestrand M. Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—An experimental and theoretical study [J]. Metall. Mater. Trans., 2001, 32A: 19
42 Bratberg J, Ågren J, Frisk K. Diffusion simulations of MC and M7C3 carbide coarsening in bcc and fcc matrix utilising new thermodynamic and kinetic description [J]. Mater. Sci. Technol., 2008, 24: 695
43 Sanhueza J P, Rojas D, Prat O, et al. Precipitation kinetics in a 10.5%Cr heat resistant steel: Experimental results and simulation by TC-PRISMA/DICTRA [J]. Mater. Chem. Phys., 2017, 200: 342
44 Li Y, Holmedal B, Li H X, et al. Precipitation and strengthening modeling for disk-shaped particles in aluminum alloys: Size distribution considered [J]. Materialia, 2018, 4: 431
45 Langer J S, Schwartz A J. Kinetics of nucleation in near-critical fluids [J]. Phys. Rev., 1980, 21A: 948
46 Zhao D D, Xu Y J, Gouttebroze S, et al. Modelling the age-hardening precipitation by a revised Langer and Schwartz approach with log-normal size distribution [J]. Metall. Mater. Trans., 2020, 51A: 4838
47 Kampmann R, Eckerlebe H, Wagner R. Precipitation kinetics in metastable solid solutions—Theoretical considerations and application to Cu-Ti alloys [J]. Mater. Res. Soc. Symp. Proc., 1987, 57: 525
48 Robson J D. Modelling the evolution of particle size distribution during nucleation, growth and coarsening [J]. Mater. Sci. Technol., 2004, 20: 441
49 Myhr O R, Ø Grong. Modelling of non-isothermal transformations in alloys containing a particle distribution [J]. Acta Mater., 2000, 48: 1605
50 Nicolas M, Deschamps A. Characterisation and modelling of precipitate evolution in an Al-Zn-Mg alloy during non-isothermal heat treatments [J]. Acta Mater., 2003, 51: 6077
51 Du Q, Poole W J, Wells M A. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys [J]. Acta Mater., 2012, 60: 3830
52 Hasting H S, Frøseth A G, Andersen S J, et al. Composition of β″ precipitates in Al-Mg-Si alloys by atom probe tomography and first principles calculations [J]. J. Appl. Phys., 2009, 106: 123527
53 Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
54 Ohmori Y, Tamura I. Epsilon carbide precipitation during tempering of plain carbon martensite [J]. Metall. Trans., 1992, 23A: 2737
55 Holmedal B, Osmundsen E, Du Q. Precipitation of non-spherical particles in aluminum alloys part I: Generalization of the Kampmann-Wagner numerical model [J]. Metall. Mater. Trans., 2016, 47A: 581
56 Chen Q, Wu K S, Sterner G, et al. Modeling precipitation kinetics during heat treatment with calphad-based tools [J]. J. Mater. Eng. Perform., 2014, 23: 4193
57 Rojhirunsakool T, Meher S, Hwang J Y, et al. Influence of composition on monomodal versus multimodal γ′ precipitation in Ni-Al-Cr alloys [J]. J. Mater. Sci., 2013, 48: 825
58 Wang T L, Du J L, Liu F. Modeling competitive precipitations among iron carbides during low-temperature tempering of martensitic carbon steel [J]. Materialia, 2020, 12: 100800
59 Robson J D. Modelling the overlap of nucleation, growth and coarsening during precipitation [J]. Acta Mater., 2004, 52: 4669
60 Popov V V, Gorbachev I I, Pasynkov A Y. Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation [J]. Philos. Mag., 2016, 96: 3632
61 Popov V V, Gorbachev I. Simulation of the evolution of precipitates in multicomponent alloys [J]. Phys. Met. Metallogr., 2003, 95: 417
62 Popov V V, Gorbachev I I, Alyabieva J A. Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei [J]. Philos. Mag., 2005, 85: 2449
63 Kozeschnik E, Svoboda J, Fischer F D. Modified evolution equations for the precipitation kinetics of complex phases in multi-component systems [J]. Calphad, 2004, 28: 379
64 Cerjak H. Mathematical Modelling of Weld Phenomena 5 [M]. London: CRC Press, 2001: 349
65 Leitner H, Bischof M, Clemens H, et al. Precipitation behaviour of a complex steel [J]. Adv. Eng. Mater., 2006, 8: 1066
66 Shim J H, Povoden-Karadeniz E, Kozeschnik E, et al. Modeling precipitation thermodynamics and kinetics in type 316 austenitic stainless steels with varying composition as an initial step toward predicting phase stability during irradiation [J]. J. Nucl. Mater., 2015, 462: 250
67 Kim M Y, Chu D J, Lee Y S, et al. Mechanical property change and precipitate evolution during long-term aging of 1.25Cr-0.5Mo steel [J]. Mater. Sci. Eng., 2020, A789: 139663
68 McDowell D L. Microstructure-sensitive computational structure-property relations in materials design [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 1
69 Chen W. High-throughput computing for accelerated materials discovery [A]. Computational Materials System Design [M]. Cham: Springer International Publishing, 2018: 169
70 Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond [J]. J. Comput. Chem., 2008, 29: 2044
71 Giannozzi P, Baroni S, Bonini N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502
72 Gonze X, Amadon B, Anglade P M, et al. ABINIT: First-principles approach to material and nanosystem properties [J]. Comput. Phys. Commun., 2009, 180: 2582
73 Fang C M, Van Huis M A, Zandbergen H W. Structure and stability of Fe2C phases from density-functional theory calculations [J]. Scr. Mater., 2010, 63: 418
74 Barrow A T W, Kang J H, Rivera-Díaz-del-Castillo P E J. The εηθ transition in 100Cr6 and its effect on mechanical properties [J]. Acta Mater., 2012, 60: 2805
75 Medvedeva N I, Van Aken D C, Medvedeva J E. Stability of binary and ternary M23C6 carbides from first principles [J]. Comput. Mater. Sci., 2015, 96: 159
76 Konyaeva M A, Medvedeva N I. Electronic structure, magnetic properties, and stability of the binary and ternary carbides (Fe, Cr)3C and (Fe, Cr)7C3 [J]. Phys. Solid State, 2009, 51: 2084
77 Ande C K, Sluiter M H F. First-principles prediction of partitioning of alloying elements between cementite and ferrite [J]. Acta Mater., 2010, 58: 6276
78 Liu Y Z, Jiang Y H, Xing J D, et al. Mechanical properties and electronic structures of M23C6 (M=Fe, Cr, Mn)-type multicomponent carbides [J]. J. Alloys Compd., 2015, 648: 874
79 Sanchez J M. Cluster expansions and the configurational energy of alloys [J]. Phys. Rev., 1993, 48B: 14013
80 van de Walle A, Asta M. Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams [J]. Modell. Simul. Mater. Sci. Eng., 2002, 10: 521
81 Wang Y, Hector L G, Zhang H, et al. Thermodynamics of the Ce γ-α transition: Density-functional study [J]. Phys. Rev., 2008, 78B: 104113
82 Wang Y, Hector L G, Zhang H, et al. A thermodynamic framework for a system with itinerant-electron magnetism [J]. J. Phys.: Condens. Matter, 2009, 21: 326003
83 Fang C M, Sluiter M H F, van Huis M A, et al. Origin of predominance of cementite among iron carbides in steel at elevated temperature [J]. Phys. Rev. Lett., 2010, 105: 055503
84 Kaplan B, Blomqvist A, Århammar C, et al. Structural determination of (Cr, Co)7C3[A]. 18th Plansee Seminar [C]. Reutte, Austria, 2013: 1
85 Chen L Q. Phase-field models for microstructure evolution [J]. Annu. Rev. Mater. Res., 2002, 32: 113
86 Cahn J W. On spinodal decomposition [J]. Acta Metall., 1961, 9: 795
87 Allen S M, Cahn J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening [J]. Acta Metall., 1979, 27: 1085
88 Wang Y Z, Li J. Phase field modeling of defects and deformation [J]. Acta Mater., 2010, 58: 1212
89 Moelans N, Blanpain B, Wollants P. An introduction to phase-field modeling of microstructure evolution [J]. Calphad, 2008, 32: 268
90 Steinbach I. Phase-field models in materials science [J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 073001
91 Xiong H, Huang Z H, Wu Z Y, et al. A generalized computational interface for combined thermodynamic and kinetic modeling [J]. Calphad, 2011, 35: 391
92 Philippe T, Erdeniz D, Dunand D C, et al. A phase-field study of the aluminizing of nickel [J]. Philos. Mag., 2015, 95: 935
93 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of θ′ precipitation in Al-Cu binary alloys [J]. Acta Mater., 2004, 52: 2973
94 Vaithyanathan V, Wolverton C, Chen L Q. Multiscale modeling of precipitate microstructure evolution [J]. Phys. Rev. Lett., 2002, 88: 125503
95 Khachaturyan A G. Theory of Structural Transformations in Solids [M]. New York: Wiley, 1983: 1
96 Kim K, Roy A, Gururajan M P, et al. First-principles/phase-field modeling of θ′ precipitation in Al-Cu alloys [J]. Acta Mater., 2017, 140: 344
97 Teichert G H, Natarajan A R, Van der Ven A, et al. Machine learning materials physics: Integrable deep neural networks enable scale bridging by learning free energy functions [J]. Comput. Methods Appl. Mech. Eng., 2019, 353: 201
98 Teichert G H, Natarajan A R, Van der Ven A, et al. Scale bridging materials physics: Active learning workflows and integrable deep neural networks for free energy function representations in alloys [J]. Comput. Methods Appl. Mech. Eng., 2020, 371: 113281
99 Zhang L, Chen L Q, Du Q. Diffuse-interface description of strain-dominated morphology of critical nuclei in phase transformations [J]. Acta Mater., 2008, 56: 3568
100 Boussinot G, Finel A, Le Bouar Y. Phase-field modeling of bimodal microstructures in nickel-based superalloys [J]. Acta Mater., 2009, 57: 921
101 Simmons J P, Shen C, Wang Y. Phase field modeling of simultaneous nucleation and growth by explicitly incorporating nucleation events [J]. Scr. Mater., 2000, 43: 935
102 Vaithyanathan V, Chen L Q. Coarsening kinetics of δ′-Al3Li precipitates: Phase-field simulation in 2D and 3D [J]. Scr. Mater., 2000, 42: 967
103 Li Y S, Yu Y Z, Cheng X L, et al. Phase field simulation of precipitates morphology with dislocations under applied stress [J]. Mater. Sci. Eng., 2011, A528: 8628
104 Du J L, Zhang A, Zhang Y B, et al. Atomistic determination on stability, cluster and microstructures in terms of crystallographic and thermo-kinetic integration of Al-Mg-Si alloys [J]. Mater. Today Commun., 2020, 24: 101220
105 Huang L K, Lin W T, Zhang Y B, et al. Generalized stability criterion for exploiting optimized mechanical properties by a general correlation between phase transformations and plastic deformations [J]. Acta Mater., 2020, 201: 167
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[5] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] RUI Xiang, LI Yanfen, ZHANG Jiarong, WANG Qitao, YAN Wei, SHAN Yiyin. Microstructure and Mechanical Properties of a Novel Designed 9Cr-ODS Steel Synergically Strengthened by Nano Precipitates[J]. 金属学报, 2023, 59(12): 1590-1602.
[8] DU Zonggang, XU Tao, LI Ning, LI Wensheng, XING Gang, JU Lu, ZHAO Lihua, WU Hua, TIAN Yucheng. Preparation of Ni-Ir/Al2O3 Catalyst and Its Application for Hydrogen Generation from Hydrous Hydrazine[J]. 金属学报, 2023, 59(10): 1335-1345.
[9] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[10] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[11] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[13] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[14] TANG Shuai, LAN Huifang, DUAN Lei, JIN Jianfeng, LI Jianping, LIU Zhenyu, WANG Guodong. Co-Precipitation Behavior in Ferrite Region During Isothermal Process in Ti-Mo-Cu Microalloyed Steel[J]. 金属学报, 2022, 58(3): 355-364.
[15] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
No Suggested Reading articles found!