Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1183-1198    DOI: 10.11900/0412.1961.2016.00383
Orginal Article Current Issue | Archive | Adv Search |
SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS
Zhaoping LU(),Suihe JIANG,Junyang HE,Jie ZHOU,Wenli SONG,Yuan WU,Hui WANG,Xiongjun LIU
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhaoping LU, Suihe JIANG, Junyang HE, Jie ZHOU, Wenli SONG, Yuan WU, Hui WANG, Xiongjun LIU. SECOND PHASE STRENGTHENING IN ADVANCED METAL MATERIALS. Acta Metall Sin, 2016, 52(10): 1183-1198.

Download:  HTML  PDF(13896KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Second phase strengthening is a conventional, yet effective hardening methods for metallic materials. However, the resultant improvements on strength always associated by dramatic decreases in toughness. In this paper, the recent research work on applications of such mechanism into several typical advanced metallic materials including high-performance steels, high-entropy alloys and bulk metallic glasses were summarized. It was found that the characteristics of precipitates, i.e., sizes, volume fractions, morphology, etc., could be manipulated by controlling the interface features and mechanical mismatch of the precipitates and matrix, which eventually give rise to much enhanced mechanical performance.

Key words:  metal material      second phase strengthening      phase boundary      mechanical property     
Received:  26 August 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (Nos.51531001, 51422101, 51271212 and 51371003), Program of Introducing Talents of Discipline to University of China (No.B07003), International Science & Technology Cooperation Program of China (No.2015DFG52600), Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_14R05), Top-Notch Young Talents Program, Program for New Century Excellent Talents in University (No.NCET-13-0663) and Fundamental Research Fund for the Central Universities (No.FRF-TP-15-004C1)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00383     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1183

Fig.1  Effects of Al and Mo additions on the formation of low-temperature precipitates (a) and the lattice parameter (b) of the newly developed maraging steels[14]
Fig.2  Ageing behavior at different temperatures (a) and stress-strain curves of the solution-treated and the peak-aged Ni(Fe, Al)-maraging steels (UE—uniform elongation) (b)[14] (Inset in Fig.2b shows the change in elongation and yield strength of traditional maraging steels caused by ageing process[33])
Fig.3  TEM images of Ni(Fe, Al)-maraging steels before (a) and after (b) the peak aged condition, and 3D atom map of precipitates (c)[14] (Inset in Fig.3b show corresponding SAED pattern)
Fig.4  Dislocation configuration after the peak ageing (a), the elemental segregation of the solutes (b) and Ni(Fe, Al) particles of Ni(Fe, Al)-maraging steels on/around the dislocation (c)[14]
Fig.5  TEM image of the (FeCoNiCr)97Ti3 (TA30) high entropy alloy (HEA) aged at 700 ℃ for 80 h
Fig.6  SEM images of the aged HEAs TA39 (a) and TA14 (b)
Fig.7  SEM images of the aged HEAs TA15 (a), TA33 (b) and TA24 (c)
Fig.8  Tensile properties of the HEAs with Ti and Al additions[16]
Fig.9  Characterization of the precipitates of the HEAs with Ti and Al additions[16]
Fig.10  Precipitation behaviors in TA24 HEA aged at 700 ℃ (a), 800 ℃ (b) and 900 ℃ (c) for 18 h
Fig.11  Precipitation behaviors in TA24 HEA aged at 800 ℃ for 1 h (a), 8 h (b) and 48 h (c)
Fig.12  Microstructure dependence on the Al content in (Cu0.5Zr0.5)100-xAlx alloys[18]
Fig.13  Typical SEM image (a) and XRD spectra of the as-cast and fractured samples (b) of Zr48Cu47.5Al4Co0.5[8]
Fig.14  Microhardnesses of the crystalline phase and amorphous matrix in the as-cast and tensioned samples of Zr48Cu47.5Al4Co0.5 bulk metallic glass (BMG) composite[8]
Fig.15  Compressive stress-strain curve of the Ti43.2Cu38Ni10Zr7.8Al0.5Si0.5 BMG composite (Inset shows the true stress-strain curve) (a), SEM image of the lateral surface (b), enlarged view of Fig.15b (c), and fractured surface of the current BMG composite (d)[21]
Fig.16  DSC heating and cooling curves (a) and schematic time-temperature-transformation (TTT) diagram (b) of (Cu0.5Zr0.5)100-xAlx (x=0, 4, 6, atomic fraction, %) alloy[18] (Ms—martensitic transformation start temperature, As—autensite transformation start temperature, Tg—glass transition temperature, TL—liquidus temperature)
Fig.17  HRTEM images of the B2 nanocrystals embedded in Zr48Cu48Al4 (a) and Zr48Cu47.5Al4Co0.5 (b) BMG composites, enlargement of a nanocrystal in Fig.19a (c) and Fig.19b (d)[20] (Insets are the SAED patterns corresponding to the square areas, TB—twin boundary, SF—stacking fault)
Fig.18  Schematic illustration of the concept for developing large-sized high-performance BMG composites with a homogeneous dispersion of transformable austenitic phase via heterogeneous nucleation[25]
Fig.19  Atomic-resolution HAADF-STEM image of the interface between B2-CuZr and Zr5Sn3 (a) and the atomic model of B2-CuZr/Zr5Sn3 interface (b)[25]
[1] Ardell A J.Metall Mater Trans, 1985; 16A: 2131
[2] Jiao Z B, Liu C T.Mater China, 2011; 30(12): 6
[2] (焦增宝, 刘锦川. 中国材料进展, 2011; 30(12): 6)
[3] Yamamoto Y, Brady M P, Lu Z P, Maziasz P J, Liu C T, Pint B A, More K L, Meyer H M, Payzant E A.Science, 2007; 316: 433
[4] Gladman T.Mater Sci Technol, 1998; 15: 30
[5] Jiao Z B, Luan J H, Miller M K, Liu C T.Acta Mater, 2015; 97: 58
[6] Pogatscher S, Antrekowitsch H, Leitner H, Sologubenko A S, Uggowitzer P J.Scr Mater, 2013; 68: 158
[7] Okuda T, Fujiwara M.J Mater Sci Lett, 1995; 14: 1600
[8] Wu Y, Xiao Y H, Chen G L, Liu C T, Lu Z P.Adv Mater, 2010; 22: 2770
[9] Ooi S W, Hill P, Rawson M, Bhadeshia H D.Mater Sci Eng, 2013; A564: 485
[10] Viswanathan U K, Dey G K, Asundi M K.Metall Trans, 1993; 24A: 2429
[11] Lu K, Lu L, Suresh S.Science, 2009; 324: 349
[12] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S.Adv Eng Mater, 2004; 6: 299
[13] Raabe D, Ponge D, Dmitrieva O, Sander B.Scr Mater, 2009; 60: 1141
[14] Jiang S H, Wang H, Wu Y, Liu X J, Chen H H, Gault B, Raabe D, Lu Z P.Submitted
[15] He J Y, Zhu C, Zhou D Q, Liu W H, Nieh T G, Lu Z P.Intermeta-llics, 2014; 55: 9
[16] He J Y, Wang H, Huang H L, Xu X D, Chen M W, Wu Y, Liu X J, Nieh T G, An K, Lu Z P.Acta Mater, 2016; 102: 187
[17] He J Y, Lei Z F, Wang H, Nieh T G, Lu Z P.Unpublished
[18] Wu Y, Wang H, Wu H H, Zhang Z Y, Hui X D, Chen G L, Ma D, Wang X L, Lu Z P.Acta Mater, 2011; 59: 2928
[19] Wu Y, Song W L, Zhang Z Y, Hui X D, Ma D, Wang X L, Shang X C, Lu Z P.Chin Sci Bull, 2011; 56: 3960
[20] Wu Y, Zhou D Q, Song W L, Wang H, Zhang Z Y, Ma D, Wang X L, Lu Z P.Phy Rev Lett, 2012; 109: 245506
[21] Zhang Z Y, Wu Y, Zhou J, Wang H, Liu X J, Lu Z P.Scr Mater, 2013; 69: 73
[22] Zhang Z Y, Wu Y, Zhou J, Song W L, Cao D, Wang H, Liu X J, Lu Z P.Intermetallics, 2013; 42: 68
[23] Zhou D Q, Wu Y, Wang H, Hui X D, Liu X J, Lu Z P.Comput Mater Sci, 2013; 79: 187
[24] Song W L, Song K K, Liu Z Q, Li R, Wu Y, Lu Z P.Mater China, 2014; 33: 300
[24] (宋温丽, 宋凯凯, 刘增乾, 李然, 吴渊, 吕昭平. 中国材料进展, 2014; 33: 300)
[25] Song W L, Wu Y, Wang H, Liu X J, Chen H W, Guo Z X, Lu Z P.Adv Mater, 2016; DOI: 10.1002/adma.20161954
[26] Decker R F, Eash J T, Goldman A J.Trans ASM, 1962; 55: 58
[27] Sha W, Cerezo A, Smith G D W.Metall Trans, 1993; 24A: 1251
[28] Millán J, Sandl?bes S, Al-Zubi A, Hickel T, Choi P, Neugebauer J, Raabe D.Acta Mater, 2014; 76: 94
[29] Vasudevan V K, Kim S J, Wayman C M.Metall Trans, 1990; 21A: 2655
[30] Vanderwalker D.Metall Trans, 1987; 18A: 1191
[31] Viswanathan U K, Dey G K, Asundi M K.Metall Trans, 1993; 24A: 2429
[32] Vasudevan V K, Kim S J, Wayman C M.Metall Trans, 1990; 21A: 2655
[33] Sha W, Guo Z.Nephrology, 2009; 18: 724
[34] He Y, Yang K, Liu K, Sha W, Guo Z L.Metall Mater Trans, 2006; 37A: 1107
[35] Teng Z K, Ghosh G, Miller M K, Huang S, Clausen B, Brown D W, Liaw P K.Acta Mater, 2012; 60: 5362
[36] Nitta H.Acta Mater, 2002; 50: 4117
[37] Hettich G, Mehrer H, Maier K.Scr Metall, 1977; 11: 795
[38] Bergner D, Khaddour Y.Defect Diffus Forum, 1993; 95: 709
[39] Gale W F, Totemeier T C.Smithells Metals Reference Book. 8th Ed., Oxford: Butterworth-Heinemann Ltd, 2003: 1
[40] Kelly A, Nicholson R S.Int Mater Rev, 1972; 17: 147
[41] Cantor B, Chang I T H, Knight P, Vincent A J B.Mater Sci Eng, 2004; A375: 213
[42] Wu Y, Liu W H, Wang X L, Ma D, Stoica A D, Nieh T G, He Z B, Lu Z P.Appl Phys Lett, 2014; 104: 051910
[43] Liu W H, Wu Y, He J Y, Nieh T G, Lu Z P.Scr Mater, 2013; 68: 526
[44] Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie R O.Science, 2014; 345: 1153
[45] Senkov O N, Scott J M, Senkova S V, Miracle D B, Woodward C F.J Alloys Compd, 2011; 509: 6043
[46] Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J.Mater Chem Phys, 2007; 103: 41
[47] Tsai K Y, Tsai M H, Yeh J W.Acta Mater, 2013; 61: 4887
[48] Senkov O N, Wilks G B, Scott J M, Miracle D B.Intermetallics, 2011; 19: 698
[49] Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, George E P.Acta Mater, 2013; 61: 5743
[50] Liu W H.Master Thesis, University of Science and Technology Beijing, 2011
[50] (刘卫红. 北京科技大学硕士学位论文, 2011)
[51] Marquis E A, Seidman D N.Acta Mater, 2001; 49: 1909
[52] Huang L, Wang H, Yang D H, Ye F, Lu Z P.Intermetallics, 2012; 28: 71
[53] Wang S C, Starink M J.Int Mater Rev, 2005; 50: 193
[54] Balikci E, Raman A, Mirshams R A.J Mater Eng Perform, 2000; 9: 324
[55] Chen S T, Tang W Y, Kuo Y F, Chen S Y, Tsau C H, Shun T T, Yeh J W.Mater Sci Eng, 2010; A527: 5818
[56] Tsai M H, Yuan H, Cheng G M, Xu W Z, Tsai K Y, Tsai C W, Jian W W, Juan C C, Shen W J, Chuang M H, Yeh J W, Zhu Y T.Intermetallics, 2013; 32: 329
[57] Porter A, Ralph B.J Mater Sci, 1981; 16: 707
[58] Johnson W L.MRS Bull, 1999; 24: 42
[59] Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[60] Chen M W.Annu Rev Mater Res, 2008; 38: 445
[61] Zhang Z F, Eckert J, Schultz L.Acta Mater, 2003; 51: 1167
[62] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[63] Johnson W L, Plummer J.Nat Mater, 2015; 14: 553
[64] Hays C C, Kim C P, Johnson W L.Phys Rev Lett, 2000; 83: 2901
[65] Chen G, Bei H, Cao Y, Gali A, Liu C T, George E P.Appl Phys Lett, 2009; 95: 081908
[66] Fan C, Li H Q, Kecskes L J, Tao K X, Choo H, Liaw P K, Liu C T.Phy Rev Lett, 2006; 96: 145506
[67] Guo S F, Liu L, Li N, Li Y.Scr Mater, 2010; 62: 329
[68] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetrious M D, Johnson W L.Nature, 2008; 451: 1085
[69] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetrious M D, Johnson W L.Proc Natl Acad Sci USA, 2008; 105: 20136
[70] Zackay V F, Parker E R, Fahr D, Busch R.Trans ASM, 1967; 60: 252
[71] Jacques P J, Furnemont Q, Lani F, Pardoen T, Delannay F.Acta Mater, 2007; 55: 3681
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!