Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (10): 1171-1182    DOI: 10.11900/0412.1961.2016.00348
Orginal Article Current Issue | Archive | Adv Search |
ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES
Zhefeng ZHANG,Ruitao QU,Zengqian LIU
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Zhefeng ZHANG, Ruitao QU, Zengqian LIU. ADVANCES IN FRACTURE BEHAVIOR AND STRENGTH THEORY OF METALLIC GLASSES. Acta Metall Sin, 2016, 52(10): 1171-1182.

Download:  HTML  PDF(1517KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to the unique amorphous structure, metallic glasses (MGs) exhibit quite distinctive deformation and fracture behaviors from the conventional crystalline materials. The high strength, brittleness and macroscopic homogenous and isotropic structural features make MGs ideal model materials for the investigations of the strength theory of high-strength materials. Hence the fracture behavior and strength theory of MGs have attracted very extensive interests of researchers from the fields of materials, mechanics and physics. This paper is based on the research works of the authors on the fracture and strength of MGs in the past decade, and concentrates on discussing the current knowledge and recent advances on the fracture behavior and strength theory of ductile and brittle MGs. Firstly, the fracture behaviors of ductile and brittle MGs including tension-compression strength asymmetry, fracture mechanism and ductile-to-brittle transition will be briefly elaborated. Then the strength theories of MGs will be discussed, with our emphasis on the foundation, validation, further development and application of the ellipse criterion. At last, some unsolved issues associated with the fracture and strength of MGs are proposed.

Key words:  metallic glass      yielding      fracture      deformation      strength theory     
Received:  02 August 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51331007, 51301174 and 51501190)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00348     OR     https://www.ams.org.cn/EN/Y2016/V52/I10/1171

Fig.1  Typical tensile and compressive stress-strain curves of a ductile metallic glass (MG)[34]
Fig.2  Typical tensile (a, c) and compressive (b, d) shear fracture morphologies (a, b) and fracture surface patterns (c, d) of ductile MGs[37] (σA—applied axial stress, θT—tensile shear fracture angle, θC—compressive shear fracture angle)
Fig.3  Typical tensile and compressive fracture morphologies of brittle MGs[30,37,68]
(a) tensile normal fracture morphology
(b~d) macroscopic and microscopic fracture morphologies of compressive fragmentation and nanoscale periodic corrugation (λ and λB represent the local wave length and the average wave length of the periodic corrugation in the region B in Fig.3c, respectively)
Fig.4  Ductile-to-brittle transition of MGs and its explanation[80]
(a) variation of the fracture toughness as a function of Poisson ratio ν among different alloy systems of MGs (νcri—critical Poisson ratio for the ductile-to-brittle transition of MGs, νe/2 and νe represent the characteristic Poisson ratios that define the shearing behavior of MGs to be crack-like shearing, common shearing and slip-like shearing)
(b) variations of the reduced thermodynamic driving force UD/UV and resistance WD/WV of shearing versus cracking as a function of ν
Fig.5  Several cases for predicting the shear fracture behaviors of MG by the Mohr-Coulomb criterion[95]
(a) conventional case, i.e., coefficient of internal friction μ and critical shear serength τ0 are constant for all stress state (τ and σ are the shear stress and normal stress acted on shear plane, respectively; σCFand σTFare compressive and tensile fracture strength, respectively)
(b) different μ for tension and compression to achieve the correct predictions of shear fracture angles (θC and θT)
(c) different μ and τ0 for tension and compression to achieve the correct predictions of both the shear fracture angles and the fracture strength (τ0T and τ0C are the critical shear stresses that derived from tensile and compressive fracture strength and fracture angles according to the Mohr-Coulomb criterion, respectively)
(d) plot of the Mohr-Coulomb criterion and the Mohr's circle with shear strength of τ0
(e) modified parameter of critical shear strength τ0M-C in the criterion to achieve the correct predictions of pure shear strength of τ0
Fig.6  Three different cases for predicting the tensile fracture behaviors of materials by the ellipse criterion[89](σ0critical stress for normal fracture, σTtensile fracture strength)(a)θT45° (b)45°<θT<90° (c)θT=90°
Fig.7  Variation of the nominal fracture stress as a function of fracture angles and the predictions by the two criteria[34] (Inset images are typical appearences of the inclined notch tensile samples with different notch angles)
Fig.8  Effect of normal stress on the shear fracture of Vit-105 MG and the predictions by the two criteria[34] (Inset figure illustrates the sample gemoemetry, with F and θN representing the applied force and notch angle, respectively)
Fig.9  Prediction of the tensile fracture of MG as a result of shear versus cleavage by the energy criterion[98] (Es0 and Ec0 are the critical shear energy density and the critical cleavage energy density, respectively)
Fig.10  Critical yield/fracture loci predicted by the universal criterion in the normal-shear stress space[95]
Fig.11  Yield surface of the universal criterion in the two dimensional stress space and comparisons with simulated (a) and experimental (b) results of MGs (E is the Young's modulus, α is the fracture mode factor, βC is the extrinsic parameter under compressive stress state)
Fig.12  Prediction on the fracture behavior of MG based on the elastic constants and the universal criterion[41] (σC—compressive fracture strength)
[1] Ashby M F, Greer A L.Scr Mater, 2006; 54: 321
[2] Wang J, Li R, Hua N, Zhang T.J Mater Res, 2011; 26: 2072
[3] Sun B A, Pan M X, Zhao D Q, Wang W H, Xi X K, Sandor M T, Wu Y.Scr Mater, 2008; 59: 1159
[4] Qu R T, Liu Z Q, Wang R F, Zhang Z F.J Alloys Compd, 2015; 637: 44
[5] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H.Science, 2007; 315: 1385
[6] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L.Nature, 2008; 451: 1085
[7] Demetriou M D, Launey M E, Garrett G, Schramm J P, Hofmann D C, Johnson W L, Ritchie R O.Nat Mater, 2011; 10: 123
[8] He Q, Cheng Y Q, Ma E, Xu J.Acta Mater, 2011; 59: 202
[9] Wu Y, Xiao Y, Chen G, Liu C T, Lu Z.Adv Mater, 2010; 22: 2770
[10] Liu Z Q, Liu G, Qu R T, Zhang Z F, Wu S J, Zhang T.Sci Rep, 2014; 4: 4167
[11] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L.Nature, 2015; 524: 200
[12] Zhang Y, Wang W H, Greer A L.Nat Mater, 2006; 5: 857
[13] Chu J P, Greene J E, Jang J S C, Huang J C, Shen Y L, Liaw P K, Yokoyama Y, Inoue A, Nieh T G.Acta Mater, 2012; 60: 3226
[14] Sarac B, Schroers J.Nat Commun, 2013; 4: 2158
[15] Qu R T, Zhang Q S, Zhang Z F.Scr Mater, 2013; 68: 845
[16] Qu R T, Zhao J X, Stoica M, Eckert J, Zhang Z F.Mater Sci Eng, 2012; A534: 365
[17] Nieh T G, Yang Y, Lu J, Liu C T.Prog Nat Sci Mater Int, 2012; 22: 355
[18] Sun B A, Wang W H.Prog Mater Sci, 2015; 74: 211
[19] Zhang Z F, Wu F F, He G, Eckert J.J Mater Sci Technol, 2007; 23: 747
[20] Schuh C A, Hufnagel T C, Ramamurty U.Acta Mater, 2007; 55: 4067
[21] Trexler M M, Thadhani N N.Prog Mater Sci, 2010; 55: 759
[22] Greer A L, Cheng Y Q, Ma E.Mater Sci Eng, 2013; R74: 71
[23] Qiao J, Jia H, Liaw P K.Mater Sci Eng, 2016; R100: 1
[24] Hufnagel T C, Schuh C A, Falk M L.Acta Mater, 2016; 109: 375
[25] Zhang Y, Greer A L.Appl Phys Lett, 2006; 89: 071907
[26] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E.Nat Mater, 2007; 6: 735
[27] Spaepen F.Acta Metall, 1977; 25: 407
[28] Wang Z T, Pan J, Li Y, Schuh C A.Phys Rev Lett, 2013; 111: 135504
[29] Leamy H, Wang T, Chen H.Metall Mater Trans, 1972; 3B: 699
[30] Zhang Z F, Zhang H, Shen B L, Inoue A, Eckert J.Philos Mag Lett, 2006; 86: 643
[31] Lewandowski J J, Wang W H, Greer A L.Philos Mag Lett, 2005; 85: 77
[32] Xu J, Ramamurty U, Ma E.JOM, 2010; 62(4): 10
[33] Qu R T, Liu Z Q, Wang G, Zhang Z F.Acta Mater, 2015; 91: 19
[34] Qu R T, Eckert J, Zhang Z F.J Appl Phys, 2011; 109: 083544
[35] Xu J, Ma E.J Mater Res, 2014; 29: 1489
[36] Schroers J, Johnson W L.Phys Rev Lett, 2004; 93: 255506
[37] Zhang Z F, He G, Eckert J, Schultz L.Phys Rev Lett, 2003; 91: 045505
[38] Donovan P E.Acta Metall, 1989; 37: 445
[39] Zhang Z F, Eckert J, Schultz L.Acta Mater, 2003; 51: 1167
[40] Schuh C A, Lund A C.Nat Mater, 2003; 2: 449
[41] Liu Z Q, Qu R T, Zhang Z F.J Appl Phys, 2015; 117: 014901
[42] Li G, Jiang M Q, Jiang F, He L, Sun J.Mater Sci Eng, 2015; A625: 393
[43] Li G, Jiang M Q, Jiang F, He L, Sun J.Appl Phys Lett, 2013; 102: 171901
[44] Qu R T, Stoica M, Eckert J, Zhang Z F.J Appl Phys, 2010; 108: 063509
[45] Pampillo C A.J Mater Sci, 1975; 10: 1194
[46] Spaepen F.Acta Metall, 1975; 23: 615
[47] Argon A S, Salama M.Mater Sci Eng, 1976; 23: 219
[48] Deibler L A, Lewandowski J J.Mater Sci Eng, 2012; A538: 259
[49] Qu R T, Zhang Z F.J Appl Phys, 2013; 114: 193504
[50] Hull D.Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999: 1
[51] Zhao Y Y, Zhang G, Estévez D, Chang C, Wang X, Li R W.JAlloys Compd, 2015; 621: 238
[52] Maa? R, Birckigt P, Borchers C, Samwer K, Volkert C A.Acta Mater, 2015; 98: 94
[53] Sun B A, Yang Y, Wang W H, Liu C T.Sci Rep, 2016; 6: 21388
[54] Wu Y, Li H X, Liu Z Y, Chen G L, Lu Z P.Intermetallics, 2010; 18: 157
[55] Qu R T, Calin M, Eckert J, Zhang Z F.Scr Mater, 2012; 66: 733
[56] Qu R T, Zhang P, Zhang Z F.J Mater Sci Technol, 2014; 30: 599
[57] Sha Z D, Pei Q X, Sorkin V, Branicio P S, Zhang Y W, Gao H.Appl Phys Lett, 2013; 103: 081903
[58] Lei X, Li C, Shi X, Xu X, Wei Y.Sci Rep, 2015; 5: 10537
[59] Yao J H, Wang J Q, Lu L, Li Y.Appl Phys Lett, 2008; 92: 041905
[60] Zhao Y Y, Ma E, Xu J.Scr Mater, 2008; 58: 496
[61] Zheng X L, Wang H, Zheng M S, Wang F H.Notch Strength and Notch Sensitivity of Materials. Beijing: Science Press, 2008: 1
[62] Murali P, Ramamurty U.Acta Mater, 2005; 53: 1467
[63] Kumar G, Rector D, Conner R D, Schroers J.Acta Mater, 2009; 57: 3572
[64] Jiang F, Jiang M Q, Wang H F, Zhao Y L, He L, Sun J.Acta Mater, 2011; 59: 2057
[65] Ketkaew J, Liu Z, Chen W, Schroers J.Phys Rev Lett, 2015; 115: 265502
[66] Han Z H, He L, Hou Y L, Feng J, Sun J.Intermetallics, 2009; 17: 553
[67] Madge S V, Wada T, Louzguine-Luzgin D V, Greer A L, Inoue A.Scr Mater, 2009; 61: 540
[68] Zhang Z F, Wu F F, Gao W, Tan J, Wang Z G, Stoica M, Das J, Eckert J, Shen B L, Inoue A.Appl Phys Lett, 2006; 89: 251917
[69] Xi X K, Zhao D Q, Pan M X, Wang W H, Wu Y, Lewandowski J J.Phys Rev Lett, 2005; 94: 125510
[70] Wang G, Zhao D Q, Bai H Y, Pan M X, Xia A L, Han B S, Xi X K, Wu Y, Wang W H.Phys Rev Lett, 2007; 98: 235501
[71] Shen J, Liang W Z, Sun J F.Appl Phys Lett, 2006; 89: 121908
[72] Meng J X, Ling Z, Jiang M Q, Zhang H S, Dai L H.Appl Phys Lett, 2008; 92: 171909
[73] Jiang M Q, Ling Z, Meng J X, Dai L H.Philos Mag, 2008; 88: 407
[74] Zhao J X, Qu R T, Wu F F, Zhang Z F, Shen B L, Stoica M, Eckert J.J Appl Phys, 2009; 105: 103519
[75] Xia X X, Wang W H.Small, 2012; 8: 1197
[76] Jiang M Q, Meng J X, Gao J B, Wang X L, Rouxel T, Keryvin V, Ling Z, Dai L H.Intermetallics, 2010; 18: 2468
[77] Gao M, Sun B A, Yuan C C, Ma J, Wang W H.Acta Mater, 2012; 60: 6952
[78] Murali P, Guo T F, Zhang Y W, Narasimhan R, Li Y, Gao H J.Phys Rev Lett, 2011; 107: 215501
[79] Singh I, Narasimhan R, Ramamurty U.Phys Rev Lett, 2016; 117: 044302
[80] Liu Z Q, Wang W H, Jiang M Q, Zhang Z F.Philos Mag Lett, 2014; 94: 658
[81] Cheng Y Q, Ma E.Prog Mater Sci, 2011; 56: 379
[82] Madge S V, Louzguine-Luzgin D V, Lewandowski J J, Greer A L.Acta Mater, 2012; 60: 4800
[83] Yuan Z W, Li F G, Wang R T, Wang C P, Li J, Xue F M.Theor Appl Fract Mech, 2014; 74: 96
[84] Johnson W L, Samwer K.Phys Rev Lett, 2005; 95: 195501
[85] Pan J, Chen Q, Liu L, Li Y.Acta Mater, 2011; 59: 5146
[86] Paul B.In: Liebowitz H ed., Fracture, An Advanced Treatise. Vol.II, New York: Academic Press, 1968: 313
[87] Lund A C, Schuh C A.Acta Mater, 2003; 51: 5399
[88] Yu M H.Appl Mech Rev, 2002; 55: 169
[89] Zhang Z F, Eckert J.Phys Rev Lett, 2005; 94: 094301
[90] Chen Y, Jiang M Q, Wei Y J, Dai L H.Philos Mag, 2011; 91: 4536
[91] Coulomb C.Memoires de Mathematique et de Physique, Presentes al' Academie, Royale des Sciences par Divers Savans, et Lus dans ses Assemblees, 1773; 7: 343
[92] Davis L A, Kavesh S.J Mater Sci, 1975; 10: 453
[93] Anand L, Su C.J Mech Phys Solids, 2005; 53: 1362
[94] Lei X, Wei Y, Wei B, Wang W H.Acta Mater, 2015; 99: 206
[95] Qu R T, Zhang Z F.Sci Rep, 2013; 3: 1117
[96] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J.Phys Rev, 2007; 75B: 134201
[97] Packard C E, Schuh C A.Acta Mater, 2007; 55: 5348
[98] Qu R T, Zhang Z J, Zhang P, Liu Z Q, Zhang Z F.Sci Rep, 2016; 6: 23359
[99] Zhang P, Li S X, Zhang Z F.Mater Sci Eng, 2011; A529: 62
[100] Wang Z, Qu R T, Scudino S, Sun B A, Prashanth K G, Louzguine-Luzgin D V, Chen M W, Zhang Z F, Eckert J.NPG Asia Mater, 2015; 7: e229
[101] Wang W H, Wang R J, Li F Y, Zhao D Q, Pan M X.Appl Phys Lett, 1999; 74: 1803
[102] Wang W H.J Appl Phys, 2006; 99: 093506
[103] Wang W H.Prog Mater Sci, 2012; 57: 487
[104] Liu Z Q, Wang R F, Qu R T, Wang W H, Zhang Z F.J Appl Phys, 2014; 115: 203513
[105] Liu Z Q, Zhang Z F.J Appl Phys, 2014; 115: 163505
[106] Liu Z Q, Zhang Z F.Appl Phys Lett, 2013; 103: 181909
[107] Liu Z Q, Zhang Z F.J Appl Phys, 2013; 114: 243519
[108] Chen H S, Wang T T.J Appl Phys, 1970; 41: 5338
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
No Suggested Reading articles found!