Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 143-150    DOI: 10.11900/0412.1961.2015.00279
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD
Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG()
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Cite this article: 

Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD. Acta Metall Sin, 2016, 52(2): 143-150.

Download:  HTML  PDF(3684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Ag material with excellent combination of high strength and high conductivity is an important conductor for both direct current resistive and pulsed high-field magnets. The strength and electrical conductivity of Cu-Ag microcomposite are closely related to the microstructure of proeutectic Cu because of its high volume fraction. The morphology of proeutectic Cu, Ag precipitation and concentration of Ag in Cu can be controlled by application of external field and the addition of the third elements. In this work, the microstructural evolution, concentration contributions, the resulting microhardness and electrical resistivity of Cu-6%Ag alloy, which was directionally solidified under a transverse magnetic field were studied. The effect of the magnetic field on the microstructure was analyzed by OM, SEM, TEM and EDS. The results demonstrate that in macro scales, the growth direction of columnar grains is gradually deflected along the axial and heating flow directions with increasing magnetic field intensity. In micro scales, the increasing magnetic field increases both the primary dendrite arm spacing and volume fraction of proeutectic Cu, and traps more supersaturated Ag in proeutectic Cu. No obvious effect on the secondary dendrite arm spacing of proeutectic Cu is observed. In nano scales, SAED pattern in TEM indicates a small quantity of fine nanostructured Ag precipitations in proeutectic Cu. A relationship among the primary dendrite arm spacing, external magnetic field intensity and the initial diffusion coefficient in liquid was established from the viewpoint of suppressed convection by the magnetic field. The increased supersaturated Ag in proeutectic Cu is thought to be caused by the influence of magnetic field on the solute redistribution coefficient. The changes of microstructure induced by magnetic field result in the increases of the microhardness and electrical resistivity in Cu-6%Ag alloy. A model was proposed to clarify the changes of electrical resistivity in terms of the resistivity of Cu matrix, the impurity-scattering resistivity from dissolved Ag in Cu and the scattering resistivity from vacancy, where the interface-scattering resistivity from precipitation of Ag is assumed to be ruled out. The result shows that the impurity-scattering resistivity from dissolved Ag in Cu, which is increased by the application of external magnetic field, plays an important role in determining the overall resistivity of the alloy.

Key words:  Cu-Ag alloy      magnetic field      microstructure      hardness      electrical resistivity     
Received:  26 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51474066 and 51004038), National High Technology Research and Development Program of China (No2007AA03Z519), Special Research Fund for Doctoral Disciplines Program of Chinese Higher Education (No.2012004211008) and Programme of Introducing Talents of Discipline to Universities of China (NoB07015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00279     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/143

Fig.1  Schematic of directional solidification apparatus with a transverse static magnetic field (1: thermal insulation, 2: liquid molten metal, 3: solid sample, 4: quartz crucible, 5: cooling water, 6: Ga-In-Sn liquid metal, 7: radiant plate, 8: transverse static magnet, 9: induction heating coils, 10: water input, 11: water output)
Fig.2  Macro-morphologies of directionally solidified Cu-6%Ag alloys (a1~c1), OM images of proeutectic Cu (a2~c2), SEM images of eutectic (a3~c3) and TEM images (a4~c4) under external magnetic field with intensities of 0 T (a1~a4), 0.80 T (b1~b4) and 1.12 T (c1~c4) (Inset in Fig.a4 indicates the SAED pattern; inset in Fig.b4 indicates the rod-like TEM morphology of Ag precipitation; B—external magnetic field, λ1—primary arm spacing of dendrite, λ2—secondary arm spacing of dendrite, L1, L2—test line lengths,. N—number of feature)
Fig.3  Average dendrite arm spacing of primary and secondary dendrites (a), microhardness and electrical resistivity (b) of directionally solidified Cu-6%Ag alloy with different magnetic field intensities
Fig.4  Schematic of solidification process of directionally solidified Cu-6%Ag alloy without and with a transverse magnetic field (L—liquid, S—solid, TL—liquidus temperature, TE—eutectic temperature, c0—initial alloy concentration, k0—equilibrium distribution coefficient)
Magnetic field intensity
T
ρ0
nΩm
Δρss
nΩm
Δρvac
nΩm
ρ
nΩm
ρM
0 16.61 4.02 0.03 20.66 18.6
0.80 16.61 7.67 0.03 24.31 20.87
1.12 16.61 8.45 0.03 25.09 21.9
Table 1  Calculated and measured electrical resistivities in Cu-6%Ag alloy
[1] Davy C A, Ke H, Kalu P N, Bole S T.IEEE Trans Appl Supercond, 2008; 18: 560
[2] Han K, Toplosky V, Goddard R, Lu J, Niu R, Chen J.IEEE Trans Appl Supercond, 2011; 22: 6900204
[3] Sakai Y, Schneider-Muntau H J.Acta Mater, 1997; 45: 1017
[4] Sakai Y, Inoue K, Asano T, Wada H, Maeda H.Appl Phys Lett, 1991; 59: 2965
[5] Han K, Vasquez A A, Xin Y, Kalu P N.Acta Mater, 2003; 51: 767
[6] Han K, Embury J D, Sims J R, Campbell L J, Schneider-Muntau H J, Pantsyrnyi V I, Shikov A, Nikulin A,Vorobieva A.Mater Sci Eng, 1999; A267: 99
[7] Morris D G, Benghalem A, Morris-Munoz M A.Scr Mater, 1999; 41: 1123
[8] Zuo X W, Han K, Zhao C C, Niu R M, Wang E G.Mater Sci Eng, 2014; A619: 319
[9] Zuo X W, Zhao C C, Wang E G, Zhang L, Han K, He J C.J Low Temp Phys, 2013; 170: 409
[10] Zuo X W, Zhao C C, Niu R M, Wang E G, Han K.J Mater Process Technol, 2015; 224: 208
[11] Liu J B, Zhang L, Meng L.Acta Metall Sin, 2006; 42: 937
[11] (刘嘉斌, 张雷, 孟亮. 金属学报, 2006; 42: 937)
[12] Liu J B, Meng L.Acta Metall Sin, 2006; 42: 931
[12] (刘嘉斌, 孟亮. 金属学报, 2006; 42: 931)
[13] Piyawit W, Xu W Z, Mathaudhu S N, Freudenberger J, Rigsbee J M, Zhu Y T.Mater Sci Eng, 2014; A610: 85
[14] Bittner F, Yin S, Kauffmann A, Freudenberger J, Klauss H, Korpala G, Kawalla R, Schillinger W, Schultz L.Mater Sci Eng, 2014; A597: 139
[15] Tian Y Z, Freudenberger J, Pippan R, Zhang Z F.Mater Sci Eng, 2013; A568: 184
[16] Lehmann P, Moreau R, Camel D, Bolcato R.J Cryst Growth, 1998; 183: 690
[17] Zuo X W, Wang E G, Han H, Zhang L, He J C.Acta Metall Sin, 2008; 44: 1219
[17] (左小伟, 王恩刚, 韩欢, 张林, 赫冀成. 金属学报, 2008; 44: 1219)
[18] Wang C J, Wang Q, Wang Y Q, Huang J, He J C.Acta Phys Sin, 2006; 55: 648
[18] (王春江, 王强, 王亚勤, 黄剑, 赫冀成. 物理学报, 2006; 55: 648)
[19] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2007; 55: 3803
[20] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2008; 56: 3146
[21] Li X, Fautrelle Y, Ren Z M, Gagnoud A, Moreau R, Zhang Y D, Esling C.Acta Mater, 2009; 57: 1689
[22] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Acta Metall Sin, 2010; 46: 1128
[22] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 金属学报, 2010; 46: 1128)
[23] Li G M, Liu Y, Su Y, Wang E G, Han K.China Foundry, 2013; 10: 162
[24] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Rare Met Mater Eng, 2012; 41: 701
[24] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 稀有金属材料与工程, 2012; 41: 701)
[25] Hunt J R.Solidification and Casting of Metals. London: The Metal Society, 1979: 3
[26] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11
[27] Trivedi R.Metall Trans, 1984; 15A: 977
[28] Hu H Q.Solidification Principle of Metal. 2nd Ed., Beijing: China Machine Press, 2000: 112
[28] (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 112)
[29] Botton V, Lehmann P, Bolcato R, Moreau R, Haettel R.Int J Heat Mass Transf, 2001; 44: 3345
[30] Gaganov A, Freudenberger J, Botcharova E, Schultz L.Mater Sci Eng, 2006; A437: 313
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!