Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 143-150    DOI: 10.11900/0412.1961.2015.00279
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD
Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG()
Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(3684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Ag material with excellent combination of high strength and high conductivity is an important conductor for both direct current resistive and pulsed high-field magnets. The strength and electrical conductivity of Cu-Ag microcomposite are closely related to the microstructure of proeutectic Cu because of its high volume fraction. The morphology of proeutectic Cu, Ag precipitation and concentration of Ag in Cu can be controlled by application of external field and the addition of the third elements. In this work, the microstructural evolution, concentration contributions, the resulting microhardness and electrical resistivity of Cu-6%Ag alloy, which was directionally solidified under a transverse magnetic field were studied. The effect of the magnetic field on the microstructure was analyzed by OM, SEM, TEM and EDS. The results demonstrate that in macro scales, the growth direction of columnar grains is gradually deflected along the axial and heating flow directions with increasing magnetic field intensity. In micro scales, the increasing magnetic field increases both the primary dendrite arm spacing and volume fraction of proeutectic Cu, and traps more supersaturated Ag in proeutectic Cu. No obvious effect on the secondary dendrite arm spacing of proeutectic Cu is observed. In nano scales, SAED pattern in TEM indicates a small quantity of fine nanostructured Ag precipitations in proeutectic Cu. A relationship among the primary dendrite arm spacing, external magnetic field intensity and the initial diffusion coefficient in liquid was established from the viewpoint of suppressed convection by the magnetic field. The increased supersaturated Ag in proeutectic Cu is thought to be caused by the influence of magnetic field on the solute redistribution coefficient. The changes of microstructure induced by magnetic field result in the increases of the microhardness and electrical resistivity in Cu-6%Ag alloy. A model was proposed to clarify the changes of electrical resistivity in terms of the resistivity of Cu matrix, the impurity-scattering resistivity from dissolved Ag in Cu and the scattering resistivity from vacancy, where the interface-scattering resistivity from precipitation of Ag is assumed to be ruled out. The result shows that the impurity-scattering resistivity from dissolved Ag in Cu, which is increased by the application of external magnetic field, plays an important role in determining the overall resistivity of the alloy.

Key words:  Cu-Ag alloy      magnetic field      microstructure      hardness      electrical resistivity     
Received:  26 May 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51474066 and 51004038), National High Technology Research and Development Program of China (No2007AA03Z519), Special Research Fund for Doctoral Disciplines Program of Chinese Higher Education (No.2012004211008) and Programme of Introducing Talents of Discipline to Universities of China (NoB07015)

Cite this article: 

Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD. Acta Metall Sin, 2016, 52(2): 143-150.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00279     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/143

Fig.1  Schematic of directional solidification apparatus with a transverse static magnetic field (1: thermal insulation, 2: liquid molten metal, 3: solid sample, 4: quartz crucible, 5: cooling water, 6: Ga-In-Sn liquid metal, 7: radiant plate, 8: transverse static magnet, 9: induction heating coils, 10: water input, 11: water output)
Fig.2  Macro-morphologies of directionally solidified Cu-6%Ag alloys (a1~c1), OM images of proeutectic Cu (a2~c2), SEM images of eutectic (a3~c3) and TEM images (a4~c4) under external magnetic field with intensities of 0 T (a1~a4), 0.80 T (b1~b4) and 1.12 T (c1~c4) (Inset in Fig.a4 indicates the SAED pattern; inset in Fig.b4 indicates the rod-like TEM morphology of Ag precipitation; B—external magnetic field, λ1—primary arm spacing of dendrite, λ2—secondary arm spacing of dendrite, L1, L2—test line lengths,. N—number of feature)
Fig.3  Average dendrite arm spacing of primary and secondary dendrites (a), microhardness and electrical resistivity (b) of directionally solidified Cu-6%Ag alloy with different magnetic field intensities
Fig.4  Schematic of solidification process of directionally solidified Cu-6%Ag alloy without and with a transverse magnetic field (L—liquid, S—solid, TL—liquidus temperature, TE—eutectic temperature, c0—initial alloy concentration, k0—equilibrium distribution coefficient)
Magnetic field intensity
T
ρ0
nΩm
Δρss
nΩm
Δρvac
nΩm
ρ
nΩm
ρM
0 16.61 4.02 0.03 20.66 18.6
0.80 16.61 7.67 0.03 24.31 20.87
1.12 16.61 8.45 0.03 25.09 21.9
Table 1  Calculated and measured electrical resistivities in Cu-6%Ag alloy
[1] Davy C A, Ke H, Kalu P N, Bole S T.IEEE Trans Appl Supercond, 2008; 18: 560
[2] Han K, Toplosky V, Goddard R, Lu J, Niu R, Chen J.IEEE Trans Appl Supercond, 2011; 22: 6900204
[3] Sakai Y, Schneider-Muntau H J.Acta Mater, 1997; 45: 1017
[4] Sakai Y, Inoue K, Asano T, Wada H, Maeda H.Appl Phys Lett, 1991; 59: 2965
[5] Han K, Vasquez A A, Xin Y, Kalu P N.Acta Mater, 2003; 51: 767
[6] Han K, Embury J D, Sims J R, Campbell L J, Schneider-Muntau H J, Pantsyrnyi V I, Shikov A, Nikulin A,Vorobieva A.Mater Sci Eng, 1999; A267: 99
[7] Morris D G, Benghalem A, Morris-Munoz M A.Scr Mater, 1999; 41: 1123
[8] Zuo X W, Han K, Zhao C C, Niu R M, Wang E G.Mater Sci Eng, 2014; A619: 319
[9] Zuo X W, Zhao C C, Wang E G, Zhang L, Han K, He J C.J Low Temp Phys, 2013; 170: 409
[10] Zuo X W, Zhao C C, Niu R M, Wang E G, Han K.J Mater Process Technol, 2015; 224: 208
[11] Liu J B, Zhang L, Meng L.Acta Metall Sin, 2006; 42: 937
[11] (刘嘉斌, 张雷, 孟亮. 金属学报, 2006; 42: 937)
[12] Liu J B, Meng L.Acta Metall Sin, 2006; 42: 931
[12] (刘嘉斌, 孟亮. 金属学报, 2006; 42: 931)
[13] Piyawit W, Xu W Z, Mathaudhu S N, Freudenberger J, Rigsbee J M, Zhu Y T.Mater Sci Eng, 2014; A610: 85
[14] Bittner F, Yin S, Kauffmann A, Freudenberger J, Klauss H, Korpala G, Kawalla R, Schillinger W, Schultz L.Mater Sci Eng, 2014; A597: 139
[15] Tian Y Z, Freudenberger J, Pippan R, Zhang Z F.Mater Sci Eng, 2013; A568: 184
[16] Lehmann P, Moreau R, Camel D, Bolcato R.J Cryst Growth, 1998; 183: 690
[17] Zuo X W, Wang E G, Han H, Zhang L, He J C.Acta Metall Sin, 2008; 44: 1219
[17] (左小伟, 王恩刚, 韩欢, 张林, 赫冀成. 金属学报, 2008; 44: 1219)
[18] Wang C J, Wang Q, Wang Y Q, Huang J, He J C.Acta Phys Sin, 2006; 55: 648
[18] (王春江, 王强, 王亚勤, 黄剑, 赫冀成. 物理学报, 2006; 55: 648)
[19] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2007; 55: 3803
[20] Li X, Fautrelle Y, Ren Z M.Acta Mater, 2008; 56: 3146
[21] Li X, Fautrelle Y, Ren Z M, Gagnoud A, Moreau R, Zhang Y D, Esling C.Acta Mater, 2009; 57: 1689
[22] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Acta Metall Sin, 2010; 46: 1128
[22] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 金属学报, 2010; 46: 1128)
[23] Li G M, Liu Y, Su Y, Wang E G, Han K.China Foundry, 2013; 10: 162
[24] Li G M, Wang E G, Zhang L, Zuo X W, He J C.Rare Met Mater Eng, 2012; 41: 701
[24] (李贵茂, 王恩刚, 张林, 左小伟, 赫冀成. 稀有金属材料与工程, 2012; 41: 701)
[25] Hunt J R.Solidification and Casting of Metals. London: The Metal Society, 1979: 3
[26] Kurz W, Fisher D J.Acta Metall, 1981; 29: 11
[27] Trivedi R.Metall Trans, 1984; 15A: 977
[28] Hu H Q.Solidification Principle of Metal. 2nd Ed., Beijing: China Machine Press, 2000: 112
[28] (胡汉起. 金属凝固原理. 第2版, 北京: 机械工业出版社, 2000: 112)
[29] Botton V, Lehmann P, Bolcato R, Moreau R, Haettel R.Int J Heat Mass Transf, 2001; 44: 3345
[30] Gaganov A, Freudenberger J, Botcharova E, Schultz L.Mater Sci Eng, 2006; A437: 313
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[4] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[5] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[9] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[10] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[11] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[12] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[13] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[14] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
No Suggested Reading articles found!