Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 135-142    DOI: 10.11900/0412.1961.2015.00216
Orginal Article Current Issue | Archive | Adv Search |
DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION
Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN(),Lin XIAO,Jun SUN
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article: 

Rui YANG,Yan PAN,Wei CHEN,Qiaoyan SUN,Lin XIAO,Jun SUN. DEFORMATION BEHAVIOR AND THE MECHANISM OF MICRO-SCALE Ti-10V-2Fe-3Al PILLARSIN COMPRESSION. Acta Metall Sin, 2016, 52(2): 135-142.

Download:  HTML  PDF(5942KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ti and its alloys have potential application in micro-electromechanical systems (MEMS) for its excellent mechanical properties. The strength of micro- and nano-scale Ti and its alloys has been proven significantly increased as the sample size decreased, which is known as the "size effect", when dislocation and twinning are dominant plastic deformation modes. Martensitic transformation is an important plastic deformation mode in the Ti alloys. However, there is a limited research on the martensitic transformation in small-scale. Therefore, the study on mechanical behavior and deformation mechanism of [011]-oriented Ti-10V-2Fe-3Al (Ti1023) single crystal micropillars in a size range of 0.3~2.0 μm were investigated under uniaxial compression. The results show that Ti1023 micropillars exhibit smooth stress-strain curves in the regime of plastic deformation without a conventional strain burst phenomenon in the submicron pillars. It means continuous plastic strain hardening. The relationship between the yield stress (σ0.2), the stress for stress-induced martensite phase (SIM) transformation (σcm) and the sample size can be expressed in the forms of σ0.2d -0.18 and σcmd -0.28 , respectively. Strain hardening exponent (n) in creases with decreasing micropillar size. SEM examination together with crystallography analysis show that {112}<111> slip predominates plastic deformation mode in the Ti1023 micropillars. Transmission electron microscopy (TEM) observation of microstructures in the deformed and undeformed micropillars indicate that both nanoscale athermal ω particles and SIM phase α″ impede dislocation movement, and prohibit the formation of tangled dislocations in a collective, avalanche-like way resulting in strain bursts.

Key words:  Ti-10V-2Fe-3Al      stress induced martensite (SIM)      size effect      strain hardening     
Received:  13 April 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.51271136, 51321003 and 51301127), National Basic Research Program of China (No.2014CB644003) and Program of Introducing Talents of Discipline to Universities of China (NoB06025)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00216     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/135

Fig.1  Grain orientation image map (OIM) of polycrystalline Ti1023 sample (The large grain indicated by arrow showes the [011] orientation for micropillars fabrication)
Fig.2  Engineering stress-engineering strain (a) and true stress-true strain (b) curves of Ti1023 micropillars in a range of size of 0.3~2.0 μm
  Fig.3 lgσt-lgεt curves for [011] Ti1023 micropillars after yielding (a) and strain hardening exponent (n) as a function of size of micropillar top (d) (b) (σt—true stress, εt—true strain)
Fig.4  Relationship curves of σ0.2 and σcm vs d (σ0.2—yield stress, σcm—stress for stress-induced martensitic transformation)
Fig.5  SEM images of pillars before and after compression (A and B are the front and left side faces, while A′ and B′ are corresponded to opposite faces of A and B, respectively)
Fig.6  TEM images of micropillars with 2.0 μm before compression
Fig.7  TEM images of a micropillar (1.0 μm) after compression to 20% engineering strain
Table 1  Angles (θ) between normal of slip planes and [011] loading axis in bcc metals
Fig.8  Schematics of slip system {110}<111>, {112}<111>, {123}<111> of bcc metals (a) and {112} slip plane in Ti1023 micropillars compressed along [011] (b)
[1] Kim J Y, Jang D C, Greer J R.Acta Mater, 2010; 58: 2355
[2] Schneider A S, Kaufmann D, Clark B G, Frick C P, Gruber P A, Mönig R, Kraft O, Arzt E.Phys Rev Lett, 2009; 103: 105501
[3] Kim J Y, Jang D C, Greer J R.Scr Mater, 2009; 61: 300
[4] Han S M, Bozorg-Grayeli T, Groves J R, Nix W D.Scr Mater, 2010; 63: 1153
[5] Kaufmann D, Mönig R, Volkert C A, Kraft O.Int J Plast, 2011; 27: 470
[6] Kaufmann D, Schneider A S, Mönig R, Volkert C A, Kraft O.Int J Plast, 2013; 49: 145
[7] Schneider A S, Clark B G, Frick C P, Gruber P A, Arzt E.Mater Sci Eng, 2009; A508: 241
[8] Huang L, Li Q J, Shan Z W, Li J, Sun J, Ma E.Nat Commu, 2011; 2: 547
[9] Greer J R, De Hosson J T M.Prog Mater Sci, 2011; 56: 654
[10] Brinckmann S, Kim J Y, Greer J R.Phys Rev Lett, 2008; 100: 155502
[11] Greer J R, Weinberger C R, Cai W.Mater Sci Eng, 2008; A493: 21
[12] Kim J Y, Jang D C, Greer J R.Int J Plast, 2012; 28: 46
[13] Frick C P, Clark B G, Arzt E.Acta Mater, 2007; 55: 3845
[14] Frick C P, Clark B G, Orso S, Petra S R.Scr Mater, 2008; 59: 7
[15] Norflleet D M, Sarosi P M, Manchiraju S, Wagner M F X, Uchic M D, Anderson P M, Mills M G.Acta Mater, 2009; 57: 3549
[16] San Juan J, Nó M L. J Alloys Compd, 2013; 577S: S25
[17] Liu L, Ding X, Li J, Lookman T, Sun J.Nanoscale, 2014; 6: 2067
[18] Withey E A, Minor A M, Chrzan D C, Morris Jr J W, Kuramoto S.Acta Mater, 2010; 58: 2652
[19] Li C.PhD Dissertation, Hunan University, Changsha, 2009
[19] (李聪. 湖南大学博士学位论文, 长沙, 2009)
[20] Duerig T W, Terlinde G T, Williams J C.Metall Trans, 1980; 11A: 1980
[21] Grujicic M, Zhang Y J.Mater Sci, 2000; 35: 4635
[22] Shu D L.Mechanical Properties of Engineering Materials. Beijing: China Machine Press, 2007: 15
[22] (束德林. 工程材料力学性能. 北京: 机械工业出版社, 2007: 15)
[23] Gu R, Ngan A H W.Scr Mater, 2013; 68: 861
[24] Jennings A T, Burek M J, Greer J R.Phys Rev Lett, 2010; 104: 135503
[25] Furuhara T, Annaka S, Tomio Y, Maki T. Mat Sci Eng, 2006; A438-440: 825
[26] Duerig T W, Albrecht J, Richter D, Fischer P.Acta Metall, 1982; 30: 2161
[27] Honeycombe R W K. The Plastic Deformation of Metal. 2nd Ed., London: Edward Arnold Ltd., 1984: 107
[28] Kim J Y, Jang D C, Greer J R.Int J Plast , 2012; 28: 46
[29] Magnin T, Driver J H.Mater Sci Eng, 1979; 39: 175
[30] Jennings A T, Gross C, Greer F, Aitken Z H, Lee S W, Weinberge C R, Greer J R.Acta Mater, 2012; 60: 3444
[31] Gu R, Ngan A H W.Acta Mater, 2012; 60: 6102
[32] Jang D C, Cai C, Greer J R.Nano Lett, 2011; 11: 1743
[33] Williams J C, Hickman B S, Marcus H L.Metall Trans, 1971; 2A: 1913
[34] Zhang J Y, Liu G, Sun J.Int J Plast, 2013; 50: 1
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[3] YU Shaoxia, WANG Qi, DENG Xiangtao, WANG Zhaodong. Preparation and Size Effect of GH3600 Nickel-Based Superalloy Ultra-Thin Strips[J]. 金属学报, 2023, 59(10): 1365-1375.
[4] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[5] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[8] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[9] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[10] Guangping ZHANG, Honglei CHEN, Xuemei LUO, Bin ZHANG. Progress in Thermal Fatigue of Micro/Nano-ScaleMetal Conductors[J]. 金属学报, 2018, 54(3): 357-366.
[11] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[12] Yefei MA, Zhuman SONG, Siqian ZHANG, Lijia CHEN, Guangping ZHANG. Evaluation of Fatigue Properties of CA6NM Martensite Stainless Steel Using Miniature Specimens[J]. 金属学报, 2018, 54(10): 1359-1367.
[13] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[14] Jun SUN, Jinyu ZHANG, Kai WU, Gang LIU. SIZE EFFECTS ON THE DEFORMATION AND DAMAGEOF Cu-BASED METALLIC NANOLAYEREDMICRO-PILLARS[J]. 金属学报, 2016, 52(10): 1249-1258.
[15] QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. 金属学报, 2014, 50(6): 722-726.
No Suggested Reading articles found!