Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 151-160    DOI: 10.11900/0412.1961.2015.00414
Orginal Article Current Issue | Archive | Adv Search |
INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY
Qiliang NAI,Jianxin DONG(),Maicang ZHANG,Zhihao YAO
School of Materials Scienc and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY. Acta Metall Sin, 2016, 52(2): 151-160.

Download:  HTML  PDF(9999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effects of microstructure on the fatigue crack growth behavior of hard-to-deformed GH4738 superalloy have been studied by a number of researchers. However, most of these studies are confined to a single factor, such as the effect of grain size on the fatigue crack growth rate, and show the effect of single factor which do not reflect the combined impacts of multi-microstructure factors. Therefore, there is a need to develop a quantitative approach to predict the effects of multi-microstructure on fatigue crack growth behavior in the design of GH4738 alloy with high damage-tolerant microstructure. A new multi-microstructure factors interaction equation is proposed for the prediction of the effects of grain size, γ′ size and carbide size on fatigue crack growth rate of GH4738 alloy in this work. Different microstructures of GH4738 alloy are produced by different heat treatments (HT) for this equation. The fatigue crack growth experiments are carried out under constant stress ranges on compact tension (CT) specimens at 650 ℃ in air. Subsequently, the effects of grain size, γ′ size and grain boundary carbides size on the fatigue crack growth rate of GH4738 alloy are analyzed by using the interaction equation of multi-microstructure factors. The results show that the equation can well predict the fatigue crack growth rate of GH4738 alloy under different microstructures. The growth rate of fatigue crack in GH4738 can be decreased with increasing grain size and reducing γ′ size and carbide size. The effect of grain size on fatigue crack growth rate is more notice able than that of γ′ and carbide sizes.

Key words:  GH4738 alloy      multi-microstructure factor      fatigue crack growth rate      interaction influence     
Received:  24 July 2015     
Fund: Supported by National Natural Science Foundation of China (No.51371023)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00414     OR     https://www.ams.org.cn/EN/Y2016/V52/I2/151

Condition Solution treatment Stabilizing treatment Aging treatment
A 1060 ℃, 4 h+W.Q. - 800 ℃, 16 h+A.C.
B 1100 ℃, 4 h+W.Q. 845 ℃, 24 h+A.C. 760 ℃, 24 h+A.C.
C 1120 ℃, 4 h+W.Q. 845 ℃, 4 h+A.C. 760 ℃, 8 h+A.C.
D 1140 ℃, 4 h+W.Q. 845 ℃, 48 h+A.C. 760 ℃, 16 h+A.C.
E 1160 ℃, 4 h+W.Q. - 800 ℃, 50 h+A.C.
Table 1  Heat treatment processes of GH4738 alloy
Fig.1  Compact tension specimen of crack propagation test (unit: mm)
Fig.2  OM images of GH4738 alloy after solution treatments at 1060 ℃ (a), 1120 ℃ (b) and 1160 ℃ (c) for 4 h
Fig.3  Carbide morphologies of GH4738 alloy after A (a), B (b), D (c) and E (d) heat treatments
Fig.4  γ′ morphologies of GH4738 alloy afte A (a), C (b) and D (c) heat treatments
Heat treatment Grain size / mm γ′ size / nm Carbide size / nm
A 303.4 49.2 326.4
B 382.1 82.6 517.9
C 423.7 60.4 452.3
D 459.4 102.9 560.5
E 479.3 79.0 350.0
Table 2  Grain size, γ′ size and carbide size of GH4738 alloy after different heat treatments
Fig.5  Fatigue crack growth rate curve and fracture morphology after C heat treatment (da/dN—fatigue crack growth rate, a—crack length)
Fig.6  da/dNK curves of GH4738 alloy after A, B and E heat treatments (ΔK—stress intensity factor range)
Fig.7  Fracture morphologies of the fatigue initiation areas of GH4738 alloy after A (a), B (b) and E (c) heat treatments
Fig.8  Fracture morphologies of Paris areas of GH4738 alloy after A (a), B (b) and E (c) heat treatments
Fig.9  da/dNK curves after C and D heat treatments
Fig.10  Fracture morphologies of Paris areas after C (a) and D (b) heat treatments
Fig.11  Comparison between predicted and measured data of da/dN
Fig.12  TEM images of fracture surfaces after A (a) and D (b) heat treatments
Fig.13  Comparisons between the predicted and experimental da/dNK curves
[1] Wang Y D, Liang Y S, Wang H W.Aircraft Des, 2009; 29(1): 37
[1] (王远达, 梁永胜, 王宏伟. 飞机设计, 2009; 29(1): 37)
[2] Zou J W, Wang W X.J Aeronaut Mater, 2006, 26: 244
[2] (邹金文, 汪武祥. 航空材料学报, 2006; 26: 244)
[3] Jackson M P, Reed R C.Mater Sci Eng, 1999; A259: 85
[4] Sadananda K, Shahinian P.Metall Trans, 1981; 12A: 343
[5] Duquete D J, Gell M.Metall Trans, 1971; 2: 1325
[6] Woodford D A.Metall Trans, 1981; 12A: 299
[7] Yang J, Dong J X, Zhang M C, Jia J, Tao Y.Acta Metall Sin, 2013; 49: 71
[7] (杨健, 董建新, 张麦仓, 贾健, 陶宇. 金属学报, 2013; 49: 71)
[8] Zhang L N, Dong J X, Zhang M C.Mater Sci Eng, 2013; A587: 168
[9] Torster F, Baumeister G, Albrecht J, Lütjering G, Helm D.Mater Sci Eng, 1997; A234: 189
[10] Gayda J, Miner R V.Metall Trans, 1983; 14A: 2301
[11] Paris P C, Gomez M P, Anderson W E.Trend Eng, 1961; 13: 9
[12] Paris P C, Erdogan F.J Basic Eng, 1963; 85: 528
[13] Walker K.ASTM STP 462, Philadelphia: American Society for Testing and Materials, 1970: 1
[14] Forman R G, Kearney V E, Engle R M.J Basic Eng, 1967; 89: 459
[15] Soboyejo W O, Ni Y, Li Y, Soboyejo A B O, Knott J F.Fatigue Fract Eng Mater Struct, 1998; 21: 541
[16] Merce C, Soboyejo A B O, Soboyejo W O.Acta Mater, 1999; 47: 2727
[17] Shademan S, Sinha V, Soboyejo A B O, Soboyejo W O.Mech Mater, 2004; 36: 161
[18] Gao M, Wei R P.Scr Metall Mater, 1994; 30: 1009
[19] Weaver D S, Semiatin S L.Scr Mater, 2007; 57: 1044
[20] Yao Z H, Dong J X, Zhang M C.J Univ Sci Technol Beijing, 2011; 33: 1501
[20] (姚志浩, 董建新, 张麦仓. 北京科技大学学报, 2011; 33: 1501)
[21] Yao Z H, Dong J X, Zhang M C, Yu Q Y, Zheng L.Trans Mater Heat Treat, 2011; 32(7): 44
[21] (姚志浩, 董建新, 张麦仓, 于秋颖, 郑磊. 材料热处理学报, 2011; 32(7): 44)
[22] Chen Z Q, Tai Q A, Zhao X D, Wang J Y, Li C Y.J Iron Steel Res, 2013; 25(8): 37
[22] (陈仲强, 邰清安, 赵兴东, 王健妍, 李昌永. 钢铁研究学报, 2013; 25(8): 37)
[23] Wang P, Dong J X, Han Y C, Yang L.Mater Mech Eng, 2009; 45(5): 79
[23] (王璞, 董建新, 韩一纯, 杨亮. 机械工程学报, 2009; 45(5): 79)
[24] Gayda J, Miner R V.Int J Fatigue, 1984; 5: 135
[25] Merrick H F, Floreen S.Metall Trans, 1977; 8A: 51
[26] Bartos J, Antolovich S D.Fracture, 1977; 2: 995
[27] Antolovich S D, Jayaraman N.High Temp Technol, 1984; 2: 3
[1] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[2] LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao. INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION[J]. 金属学报, 2014, 50(7): 821-831.
[3] XIONG Ying CHEN Bingbing ZHENG Sanlong GAO Zengliang. STUDY ON FATIGUE CRACK GROWTH BEHAVIOR OF 16MnR STEEL UNDER DIFFERENT CONDITIONS[J]. 金属学报, 2009, 45(7): 849-855.
[4] LU Liantao LI Wei ZHANG Jiwang SHIOZAWA Kazuaki ZHANG Weihua. ANALYSIS OF ROTARY BENDING GIGACYCLE FATIGUE PROPERTIES OF BEARING STEEL GCr15[J]. 金属学报, 2009, 45(1): 73-78.
[5] CHEN Wenzhe;ZHANG Sa;QIAN Kuangwu (Department of Materials; Fuzhou University; Fuzhou 350002)GU Haicheng (Institute of Materials; Xi'an Jiaotong University; Xi'an 710049)WANG Zhongguang (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). FATIGUE CRACK GROWTH RATES AND FATIGUE THRESHOLDS OF CENTRIFUGAL SPRAY DEPOSITED Ti-48Al-2Mn-2Nb[J]. 金属学报, 1998, 34(1): 70-74.
No Suggested Reading articles found!