Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (12): 1435-1440    DOI: 10.11900/0412.1961.2015.00125
Current Issue | Archive | Adv Search |
EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES
Juan MU,Dongmei WANG,Yandong WANG()
Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, Shenyang 110819
Cite this article: 

Juan MU,Dongmei WANG,Yandong WANG. EFFECT OF COOLING RATE AND ASPECT RATIO ON MECHANICAL PROPERTIES OF Ti-BASED AMORPHOUS ALLOY COMPOSITES. Acta Metall Sin, 2015, 51(12): 1435-1440.

Download:  HTML  PDF(954KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Amorphous alloy composite is designed to prevent rapid propagation of shear bands in amorphous phase by introducing the second crystalline phase, which can improve the plasticity of alloy. In situ formed amorphous alloy composites have attracted much interest due to excellent properties and extensive application prospect, especially the dendrite reinforced amorphous alloy composite with excellent tensile plasticity. Recent studies show that the plastic deformation behavior of amorphous alloy composite is not only related to the mechanical properties of the crystalline phase, such as elastic modulus, but also with the size, volume fraction and morphology of the crystalline phase. In addition, the mechanical properties, especially the plastic deformation ability, of amorphous alloys are closely related to topological morphology of the samples, such as aspect ratio. For the amorphous alloy composite, the relationship between mechanical properties and topological morphology of the samples are of interest. In this work, by adjusting preparation process and size of the samples, the effect of cooling rates and aspect ratios on the mechanical properties of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites were systematically studied. As decreasing the cooling rate during the preparation process, the sizes of dendrites in the amorphous alloy composites increases. And the crystalline phase presents evolution from branchlets to coarse dendrite. As the cooling rate decreases, strength of the composite decreases while plasticity increases. Moreover, different from the previous reports, the mechanical properties of amorphous alloy composite are not sensitive to the aspect ratio. It is attributed to the existing of the dendrites phase and deformation-induced phase transformation in the dendrites, which may adjust stress distribution of the amorphous alloy composites during deformation process.

Key words:  amorphous alloy composite      mechanical property      cooling rate      aspect ratio     
Fund: Supported by National Natural Science Foundation of China (Nos.51301034 and 51434008) and Fundamental Research Funds for the Central Universities (Nos.N141004001 and L1502026)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00125     OR     https://www.ams.org.cn/EN/Y2015/V51/I12/1435

Fig.1  XRD spectra of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with different diameters
Fig.2  SEM images of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with diameters of 3 mm (a), 5 mm (b) and 8 mm (c)
Diameter Area Ti Zr Ni Cu
mm
3 Matrix 41.43 42.46 5.70 10.41
Dendrite 59.42 37.91 0.38 2.29
5 Matrix 43.59 41.88 4.98 9.55
Dendrite 53.33 39.25 2.51 4.90
8 Matrix 40.14 43.07 5.86 10.94
Dendrite 58.58 37.60 1.07 2.75
Table 1  EDS results of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with different diameters
Fig.3  DSC curves of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with different diameters (Tg—glass transition temperature, Tx—on-set crystallization temperature)
Fig.4  Compressive stress-strain curves of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with diameters of 3 mm (a), 5 mm (b) and 8 mm (c) at different aspect ratios H/D (H—height, D—diameter)
Diameter Tg / ℃ Tx / ℃ Crystallization
/ mm entropy / ( Jg)
3 340.5 378.2 -33.60
5 362.0 379.5 -29.62
8 356.4 377.1 -29.96
Table 2  Thermal dynamic parameters of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with different diameters gained from DSC curves
Fig.5  Yield strength (a), fracture strength (b) and plastic strain (c) of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with different diameters at various aspect ratios
Fig.6  Variations of mechanical properties of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with diameters of 3 mm (a), 5 mm (b) and 8 mm (c) as a function of aspect ratios
Fig.7  SEM images of fracture surfaces of Ti45.7Zr33Ni2.9Cu5.9Be12.5 amorphous alloy composites with diameters of 3 mm (a), 5 mm (b) and 8 mm (c)
[1] Li Y, Poon S, Shiflet G, Xu J, Kim D, Loffler J. MRS Bull, 2007; 32: 624
[2] Inoue A, Zhang W, Tsurui T, Yavari A, Greer A. Philos Mag Lett, 2005; 85: 221
[3] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901
[4] Hofmann D, Suh J, Wiest A, Duan G, Lind M, Demetriou M, Johnson W. Nature, 2008; 451: 1085
[5] Choi-Yim H, Busch R, Koster U, Johnson W. Acta Mater, 1999; 47: 2455
[6] Eckert J, Das J, Pauly S, Duhamel C. J Mater Res, 2007; 22: 285
[7] Schuh C, Hufnagel T, Ramamurty U. Acta Mater, 2007; 55: 4067
[8] Deng S T, Diao H, Chen Y L, Yan C, Zhang H F, Wang A M, Hu Z Q. Scr Mater, 2011; 64: 85
[9] Zhang B, Fu H M, Zhu Z Z, Wang A M, Li H, Dong C, Hu Z Q, Zhang H F. Mater Sci Eng, 2012; A540: 207
[10] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278
[11] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[12] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905
[13] Guo H, Yan P F, Wang Y B, Tan J, Zhang Z F, Sui M L, Ma E. Nat Mater, 2007; 6: 735
[14] Jang D, Greer J R. Nat Mater, 2010; 9: 215
[15] Murray J L. Phase Diagrams of Binary Titanium Alloys. Novelty: ASM International, 1987: 1
[16] Donachie M J. Titanium: a Technical Guide. Novelty: ASM International, 2000: 1
[17] Ferguson I. Technical Report 2438-1. Abingdon: United Kingdom Atomic Energy Assoc, 1976: 1
[18] Mu J, Zhu Z W, Su R, Wang Y, Zhang H F, Ren Y. Acta Mater, 2013; 61: 5008
[19] Scherrer P. G?ttinger Nachrichten, 1918; 2: 98
[20] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W. Proc Natl Acad Sci, 2008; 105: 20136
[21] Chen G, Cheng J L, Liu C T. Intermetallics, 2012; 28: 25
[22] Lee C J, Huang J C, Nieh T G. Appl Phys Lett, 2007; 91: 161913
[23] Oh Y S, Kim C P, Lee S, Kim N J. Acta Mater, 2011; 59: 7277
[24] Inoue A. Mater Trans JIM, 1995; 36: 866
[25] Johnson W. MRS Bull, 1999; 24: 42
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!