Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1498-1504    DOI: 10.11900/0412.1961.2014.00310
Current Issue | Archive | Adv Search |
INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY
LIU Dingming1,2, ZHANG Bo3, WANG Jie1, WANG Aimin1(), WANG Yandong2, ZHANG Haifeng1, HU Zhuangqi1
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 School of Materials and Metallurgy, Northeastern University, Shenyang 110819
3 Department of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136
Cite this article: 

LIU Dingming, ZHANG Bo, WANG Jie, WANG Aimin, WANG Yandong, ZHANG Haifeng, HU Zhuangqi. INFLUENCE OF TEMPERATURE ON QUASI-STATIC MECHANICAL PROPERTIES OF Zr-45Ti-5Al-3V ALLOY. Acta Metall Sin, 2014, 50(12): 1498-1504.

Download:  HTML  PDF(8161KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr alloys are widely used in pressurized-water reactors as fuel cladding materials due to their low neutron absorption cross section and excellent radiation resistance. Aside from the aforementioned properties, Zr alloys have high strength, relative low density and many other excellent physical and chemical properties that make them promising structural materials used in the aerospace environment. Zr-45Ti-5Al-3V alloy is a high strength zirconium alloy which is newly developed for use in aerospace environment. The temperature in space environment can change from -100 ℃ to more than 100 ℃, so it is necessary to study the mechanical behavior of Zr-45Ti-5Al-3V alloy under different temperatures. In this work, mechanical properties of Zr-45Ti-5Al-3V alloy under different temperatures (-100, 25, 100 and 200 ℃) and strain rates (10-4, 10-3 and 10-2 s-1) were investigated. The microstructure of the Zr-45Ti-5Al-3V alloy is characterized by SEM and XRD. It is shown that the alloy is comprised of two phases: a lath-like a phase with hcp structure is distributed uniformly in the matrix comprised of a b phase with bcc structure. Quasi-static mechanical properties of Zr-45Ti-5Al-3V alloy were studied in temperature range of -100~200 ℃ under various strain rates (10-4, 10-3 and 10-2 s-1) using the Instron 5528 electric universal material testing machine. The results showed that the alloy possessed yield strength of more than 1355 MPa at room temperature and higher fracture strength in tensile test, but the elongation was small. With increasing temperature, the yield strength and the fracture strength of the alloy decreased, while the amount of plastic deformation increased. Under the condition of compression test, the yield strength also decreased with temperature increasing, while the plasticity and fracture strength reached maximum at room temperature. The influence of strain rate on the mechanical properties of the alloy was not significant under both tensile and compression tests.

Key words:  Zr-45Ti-5Al-3V alloy      mechanical property      temperature      strain rate     
ZTFLH:  TG 146.414  
  TG 133.25  
Fund: Supported by National Basic Research Program of China (No.2010CB731602)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00310     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1498

Fig.1  XRD spectrum (a) and SEM image (b) of Zr-45Ti-5Al-3V alloy
Fig.2  Tensile (a) and compression (b) true stress-strain curves of Zr-45Ti-5Al-3V alloy under different strain rates ε? at room temperature
Fig.3  Low (a) and locally high (b, c) magnified SEM images of tensile fracture surface under ε? =10-4 s-1 at room temperature
Fig.4  SEM images of compressive fracture surface at room temperature under ε? =10-2 s-1 (a), ε? =10-3 s-1(b) and ε?=10-4 s-1 (c)
Fig.5  Variations of fracture strength sb (a), yielding strength s0.2 (b) and elongation (c) of Zr-45Ti-5Al-3V alloy during tension at different temperatures
Fig.6  SEM images of tensile fracture surface under ε? =10-4 s-1 at -100 ℃ (a), 100 ℃ (b) and 200 ℃ (c)
Fig.7  Quasi- static compressive strain- stress curves under ε?=10-3 s-1 at different temperatures
Fig.8  Morphologies of compressive fracture surface of Zr-45Ti-5Al-3V alloy at -100 ℃ (a), -50 ℃ (b), 100 ℃ (c) and 200 ℃ (d)
[1] Wang S H, Yang D Z, He S Y, Lv G. Mater Sci Technol, 2004; 12(6): 579
(王淑花, 杨德庄, 何世禹, 吕 钢. 材料科学与工艺, 2004; 12(6): 579)
[2] Li X, Wang L, Yu X M. Mater Sci Eng, 2003; A33: 2987
[3] Qian J,Zhu Y L,Feng Y Y,Li F B. The Basic of Space Technology. Beijing: Science Press, 1986: 520
(钱 骥,朱毅麟,冯英远,李凡本.空间技术基础. 北京: 科学出版社, 1986: 520)
[4] Zhao W J, Zhou B X, Miao Z, Peng Q, Jiang Y R, Jiang H M, Pang H. At Energy Sci Technol, 2005; 39(Sl): 2
(赵文金, 周邦新, 苗 志, 彭 倩, 蒋有荣, 蒋宏曼, 庞 华. 原子能科学技术, 2005; 39(增刊): 2
[5] Saintoyant L, Legras L, Brchet Y. Scr Mater, 2011; 64: 418
[6] Farhat Z N. Mater Sci Eng, 2008; A474: 96
[7] Kondo R, Suyalatu, Tsutsumi Y, Doi H, Nomura N, Hanawa T. Mater Sci Eng, 2011; C31: 900
[8] Sun C, Tan J, Ying S H, Li C. Rare Met Mater Eng, 2008; 37(4): 584
(孙 超, 谭 军, 应诗浩, 李 聪. 稀有金属材料与工程, 2008; 37(4): 584)
[9] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q, Liu R P. Mater Sci Eng, 2012; A539: 42
[10] Liang S X, Ma M Z, Jing R, Zhang X Y, Liu R P. Mater Sci Eng, 2012; A532: 1
[11] Liang S X, Yin L X, Che H W, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2013; 52: 246
[12] Li Y, Zhang L, Zhu Z W, Li H, Wang A M, Zhang H F. Acta Metall Sin, 2014; 50: 19
(李 烨, 张 龙, 朱正旺, 李 宏, 王爱民, 张海峰. 金属学报, 2014; 50: 19)
[13] Liang S X, Ma M Z, Jing R, Tan C L, Liu R P. Mater Sci Eng, 2012; A541: 67
[14] Wang J, Zhang H W, Wang A M, Li H, Fu H M, Zhu Z W, Zhang H F. Acta Metall Sin, 2012; 48: 636
(王 杰, 张宏伟, 王爱民, 李 宏, 付华萌, 朱正旺, 张海峰. 金属学报, 2012; 48: 636)
[15] Liang S X, Yin L X, Jing R, Zhang X Y, Ma M Z, Liu R P. J Mater Res, 2013; 28: 2715
[16] Tan Y B, Liu W C, Yuan H, Liu R P, Zhang X Y. Metall Mater Trans, 2013; 44A: 5284
[17] Liang S X, Yin L X, Che H W, Tan C L, Jing R, Zhou Y K, Ma M Z, Liu R P. Mater Des, 2014; 55: 64
[18] Tan Y B, Yang L H, Tian C, Liu W C, Liu R P, Zhang X Y. Mater Sci Eng, 2014; A597: 171
[19] Tan Y B, Yang L H, Tian C, Liu R P, Zhang X Y, Liu W C. Mater Sci Eng, 2013; A577: 218
[20] Zhan Y Z, Zhang G D. Aerospace Mater Technol, 2003; (1): 1
(湛永钟, 张国定. 宇航材料工艺, 2003; (1): 1)
[21] Cui Z Q,Tan Y C. Metallography and Heat Treatment. Beijing: Mechanical Industry Press, 2007: 186
(崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 186)
[22] Xu L, Guo R P, Bai C G, Lei J F, Yang R. J Mater Sci Technol, 2014, doi:10.1016/j.jmst.2014.04.011
[23] Venkatesh B D, Chen D L, Bhole S D. Mater Sci Eng, 2009; A506: 117
[24] Singh G, Sen I, Gopinath K, Ramamurty U. Mater Sci Eng, 2012; A540: 142
[25] Feng D.Physics of Metals. Beijing: China Machine Press, 1999: 354
(冯 端. 金属物理学. 北京: 中国机械出版社, 1999: 354)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!