Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (12): 1505-1512    DOI: 10.11900/0412.1961.2014.00317
Current Issue | Archive | Adv Search |
RESEARCH ON INTERNAL CRACK SUSCEPTIBILITY OF CONTINUOUS-CASTING BLOOM BASED ON MICRO-SEGREGATION MODEL
DOU Kun1, QING Jiasheng1, WANG Lei1, ZHANG Xiaofeng1, WANG Bao1,2, LIU Qing1(), DONG Hongbiao2
1 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083
2 Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK
Cite this article: 

DOU Kun, QING Jiasheng, WANG Lei, ZHANG Xiaofeng, WANG Bao, LIU Qing, DONG Hongbiao. RESEARCH ON INTERNAL CRACK SUSCEPTIBILITY OF CONTINUOUS-CASTING BLOOM BASED ON MICRO-SEGREGATION MODEL. Acta Metall Sin, 2014, 50(12): 1505-1512.

Download:  HTML  PDF(1643KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The solidification and cooling of liquid steel in continuous casting process is a complicated non-equilibrium phenomenon. During steel solidification process, the micro-segregation of solute elements between liquid steel and solidified shell will vary with their temperature-dependent diffusion coefficients and equilibrium distribution coefficients. Due to non-uniform cooling pattern in the continuous casting process of steel blooms, the fluctuation of cooling rate in bloom will have a great influence on micro-segregation degree of the elements. The micro-segregation behavior of solute elements in steel solidification process is responsible for the variation of characteristic temperatures such as zero strength temperature (ZST), zero ductility temperature (ZDT) and liquid impenetrable temperature (LIT), which make up the brittle temperature range in steel solidification. During continuous casting process of steel, internal cracks created by thermal and mechanical deformation tend to occur in this range. To prevent the occurrence of these cracks in continuous casting bloom, it is essential to better understand about the internal crack susceptibility concerning micro-segregation behavior in the non-uniform cooling process. In this work, a micro-segregation analytical model for YQ450NQR1 steel continuous casting bloom is established to study the inter-dendritic segregation behavior of main solute elements C, Si, Mn, P and S at various cooling rates, the results show that P and S are more likely to segregate compared with C, Si and Mn and the increase of cooling rate weakens the micro-segregation degree of C, Si, Mn, P and S. Based on the micro-segregation model established above, ZST, ZDT and LIT for YQ450NQR1 steel are calculated and the influences of cooling rate on ZST, ZDT and LIT are analyzed. It reveals that ZST, ZDT and LIT of YQ450NQR1 steel bloom decrease accordingly with the increase of cooling rate. On this basis, the index of internal crack susceptibility (IICS) is defined to quantitatively characterize the internal crack susceptibility of the bloom. The results show that the internal crack susceptibility becomes larger while the IICS value approaches to 1. Furthermore, an internal crack susceptibility model is obtained concerning IICS and cooling rate (CR) and the validation is performed to certify the model′s suitability in quantitatively predicting internal crack susceptibility of YQ450NQR1 steel continuous casting bloom in the non-uniform cooling process.

Key words:  continuous casting bloom      non-uniform cooling      micro-segregation      internal crack susceptibility     
ZTFLH:  TG244.3  
Fund: Supported by National Natural Science Foundation of China (No.51074023) and Independent R&D Foundation for State Key Laboratory of Advanced Metallurgy (No.41602023)
About author:  null

作者简介: 窦 坤, 男, 1988年生, 博士生

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00317     OR     https://www.ams.org.cn/EN/Y2014/V50/I12/1505

Fig.1  Peritectic reaction region in Fe-C binary phase diagram[15]
Element d-Fe g-Fe
DS,i / (m2 ? s-1) mi / (℃ ? %-1) ki DS,i / (m2 ? s-1) mi / (℃ ? %-1) ki
C 7.9×10-9 80 0.20 6.4×10-10 60 0.35
Si 3.5×10-11 8 0.77 1.1×10-12 8 0.52
Mn 4.0×10-11 5 0.75 4.2×10-13 5 0.75
P 4.4×10-11 34 0.13 2.5×10-12 34 0.06
S 1.6×10-10 40 0.06 3.9×10-11 40 0.025
Table 1  Solidification parameters of main solute elements in steel[17]
Steel C Si Mn P S Fe
M1 0.13 0.35 1.52 0.016 0.002 Bal.
YQ450NQR1 0.09~0.14 0.30~0.50 1.25~1.40 ≤0.025 ≤0.015 Bal.
Table 2  Chemical compositions of M1 steel from reference [18] and YQ450NQR1 steel in this research
Fig.2  Comparison between predicted and measured[18] results for P (a) and Mn (b) segregation (CR—cooling rate)
Fig.3  Cooling rates of typical positions in YQ450NQR1 steel bloom

(a) bloom center (b) center of narrow surface in bloom

(c) center of wide surface in bloom (d) bloom corner

Fig.4  Calculation flowchart for micro-segregation model
Fig.5  Variation of segregation in solidification process
Fig.6  Effects of cooling rate on micro-segregation of elements C (a), Si (b), Mn (c), P (d) and S (e)
Fig.7  Effects of cooling rate on zero strength temperature (ZST), zero ductility temperature (ZDT) and liquid impenetrable temperature (LIT)
Fig.8  Fitting curve between cooling rate and index of internal crack susceptibility (IICS) s
Fig.9  Morphology of subcutaneous cracks in longitudinal sliced bloom
Fig.10  Evolution of bloom shell thickness with time
Fig.11  Evolution of cooling rate in the crack location
  
[1] Cai K K. Quality Control of Continuous Casting Billet. Beijing: Metallurgical Industry Press, 2010: 90
(蔡开科. 连铸坯质量控制. 北京: 冶金工业出版社, 2010: 90)
[2] Brimacombe J K, Sorimachi K. Metall Mater Trans, 1977; 8B: 489
[3] Mintz B, Yue S, Jonas J J. Int Mater Rev, 1991; 36: 187
[4] Liu Q, Zhang L Q, Wang L Z, Ding X Z, Cao L G, Qi Y G, Liu Y W. J Univ Sci Technol Beijing, 2006; 28: 133
(刘 青, 张立强, 王良周, 丁秀中, 曹立国, 齐永革, 刘彦伟. 北京科技大学学报, 2006; 28: 133)
[5] Himemiya T, Umeda T. ISIJ Int, 1998; 38: 730
[6] Han Z Q, Cai K K. Acta Metall Sin, 2000; 36: 869
(韩志强, 蔡开科. 金属学报, 2000; 36: 869)
[7] Luo H W, Karjalainen L P, Porter D A, Liimatainen H M, Zhang Y. ISIJ Int, 2002; 42: 273
[8] El-Bealy M, Leskinen N, Fredrikson H. Ironmaking Steelmaking, 1995; 22: 246
[9] Hardin R A, Liu K, Beckermann C, Kapoor A. Metall Mater Trans, 2003; 34B: 297
[10] Wang X Y, Liu Q, Wang B. Ironmaking Steelmaking, 2011; 38: 552
[11] Clyne T W, Kurz W. Metall Mater Trans, 1981; 12A: 965
[12] Yaguchi H. Metall Mater Trans, 1986; 17A: 2080
[13] Won Y M, Thomas B G. Metall Mater Trans, 2001; 32A: 1755
[14] Clyne T W, Wolf M, Kurz W. Metall Mater Trans, 1982; 13B: 259
[15] Dhindaw B K, Antonsson T, Fredriksson H, Tinoco J. Metall Mater Trans, 2004; 35A: 2869
[16] Cornelissen M C M. Ironmaking Steelmaking, 1986; 13: 204
[17] Liu Z Z, Wei J, Cai K K. ISIJ Int, 2002; 42: 958
[18] Matsumiya T, Kajioka H, Mizoguchi S, Ueshima Y, Esaka H. Trans Iron Steel Inst Jpn, 1984; 24: 873
[19] Liu Q, Wang L Z, Zhang L Q, Cao L G, Ding X Z, Liang M, Qi Y G. Int J Miner Metall Mater, 2008; 15: 17
[20] Cai Z Z, Zhu M Y. Acta Metall Sin, 2009; 45: 949
(蔡兆镇, 朱苗勇. 金属学报, 2009; 45: 949)
[21] Wang W L, Zhu M Y, Cai Z Z, Luo S, Ji C. Steel Res Int, 2012; 83: 1152
[22] Cai Z Z, Zhu M Y. Foundry Technol, 2009; 11: 1396
(蔡兆镇, 朱苗勇. 铸造技术, 2009; 11: 1396)
[23] Luo S, Zhu M Y, Ji C, Cai Z Z. Iron Steel, 2010; 45(6): 31
(罗 森, 朱苗勇, 祭 程, 蔡兆镇. 钢铁, 2010; 45(6): 31)
[24] Jing C L, Wang X H, Jiang M. Steel Res Int, 2011; 82: 1173
[25] Zhang Z X, Min Y, Jiang M F. J Northeastern Univ (Nat Sci Ed), 2010; 31: 966
(张志祥, 闵 义, 姜茂发. 东北大学学报(自然科学版), 2010; 31: 966)
[26] Yoon J K. ISIJ Int, 2008; 48: 879
[1] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[2] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[3] LIN Qiyong ZHU Miaoyong. INFLUENCE OF CASTING SPEED ON SOFT REDUCTION GRADIENT IN CONTINUOUS CASTING BLOOM[J]. 金属学报, 2009, 45(2): 253-256.
[4] WANG Anchuan; LI Yiyi; LI Dongfa; YANG Ke; FAN Cungan; SHI Changxu(Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). EFFECT OF Nb AND Ti CONTENTS ON MICRO-SEGREGATION OF J-90 ALLOY[J]. 金属学报, 1995, 31(5): 216-222.
No Suggested Reading articles found!