Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1357-1366    DOI: 10.11900/0412.1961.2014.00132
Current Issue | Archive | Adv Search |
EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS
LI Hai1,3(), MAO Qingzhong1, WANG Zhixiu1,2,3, MIAO Fenfen1, FANG Bijun1, SONG Renguo1,3, ZHENG Ziqiao2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
2 School of Materials Science and Engineering, Central South University, Changsha 410083
3 Jiangsu Key Laboratory of Materials Surface Technology, Changzhou University, Changzhou 213164
Cite this article: 

LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF HIGH TEMPERATURE PRE-AGEING AND LOW-TEMPERATURE RE-AGEING ON MECHANICAL PROPERTIES AND INTERGRANULAR CORROSION SUSCEPTIBILITY OF Al-Mg-Si-Cu ALLOYS. Acta Metall Sin, 2014, 50(11): 1357-1366.

Download:  HTML  PDF(7547KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is well known that in peak-aged conditions age-hardenable aluminum alloys usually have high strength but low corrosion resistance. Low corrosion resistance of peak-aged Al alloys limits their applications in some corrosive conditions. In order to enhance the corrosion resistance, over-ageing treatments are often carried out but at the expense of strength. Therefore, it is of great industrial value to improve both strength and corrosion resistance of Al alloys simultaneously. In the present work, a novel two-step ageing treatment consisted of high-temperature pre-ageing and low-temperature re-ageing was proposed to improve both the tensile properties and intergranular corrosion (IGC) resistance of Al-Mg-Si-Cu alloys simultaneously. Furthermore, the effects of pre-ageing time at 180 ℃ and re-ageing time at 160 ℃ on the mechanical property and IGC susceptibility of the 6061 Al alloy were investigated by tensile testing and immersion corrosion testing. It was shown that after the optimized two-step ageing treatment of 180 ℃, 2 h+160 ℃, 120 h, the 6061 Al alloy had slightly higher strength than that of the conventional peak-aged samples and no susceptibility to intergranular corrosion. TEM observation revealed that the microstructures of the two-step treated 6061 Al alloy were consisted of high density of b″ phase along with small amount of Q' phase in the matrix and discontinuously distributed, spherical grain boundary precipitates, which led to high strength and IGC resistance of the 6061 Al alloy, respectively. The formation of the characteristic microstructures were attributed to the different decreased level of atomic diffusion rate between the matrix and grain boundary when decreasing from relatively high pre-ageing temperature to low re-ageing temperature, which resulted in the relatively slow growth of the matrix pre-precipitates and rapid coarsening of the grain boundary pre-precipitates, simultaneously.

Key words:  aluminum alloy      two-step ageing      mechanical property      intergranular corrosion      microstructure     
Received:  16 August 2014     
ZTFLH:  TG147  
Fund: National Natural Science Foundation of China (No.51301027), National Basic Research Program of China (No.2005CB623705) and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No.14KJB430002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00132     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1357

Fig.1  Tensile properties of the 6061 alloy pre-aged at 180 ℃ for 15 min, 2 h and 8 h (sb—ultimate tensile strength,ss—yield strength, d—elongation)
Fig.2  Tensile properties of the 6061 alloy re-aged at 160 ℃ after pre-ageing at 180 ℃ for 15 min (a), 2 h (b) and 8 h (c)
Fig.3  Corrosion morphologies of the 6061 alloy pre-aged at 180 ℃ for 15 min (a), 2 h (b) and 8 h (c)
Fig.4  Corrosion morphologies of the 6061 alloy processed by two-stage aging treament of 180 ℃, 15 min+160 ℃, 120 h (a), 180 ℃, 15 min+160 ℃, 360 h (b), 180 ℃, 2 h+160 ℃, 72 h (c), 180 ℃, 2 h+160 ℃, 120 h (d), 180 ℃, 8 h+160 ℃, 120 h (e) and 180 ℃, 8 h+160 ℃, 360 h (f)
Ageing treatment Corrosion mode Corrosion depth / mm
180 ℃, 15 min IGC 180
180 ℃, 15 min+160 ℃, 24 h IGC 210
180 ℃, 15 min+160 ℃, 72 h IGC 220
180 ℃, 15 min+160 ℃, 120 h IGC 250
180 ℃, 15 min+160 ℃, 240 h IGC 210
180 ℃, 15 min+160 ℃, 360 h IGC 190
180 ℃, 2 h IGC 230
180 ℃, 2 h+160 ℃, 24 h IGC 150
180 ℃, 2 h+160 ℃, 72 h IGC 120
180 ℃, 2 h+160 ℃, 120 h UC -
180 ℃, 2 h+160 ℃, 240 h UC -
180 ℃, 2 h+160 ℃, 360 h UC -
180 ℃, 8 h IGC 360
180 ℃, 8 h+160 ℃, 24 h IGC 310
180 ℃, 8 h+160 ℃, 72 h IGC 240
180 ℃, 8 h+160 ℃, 120 h IGC 190
180 ℃, 8 h+160 ℃, 240 h IGC 120
180 ℃, 8 h+160 ℃, 360 h UC -
Table 1  Corrosion mode and corrosion depth of the 6061 alloy after different heat treatments
Fig.5  TEM images of matrix (a, c, e) and grain boundary precipitation (b, d, f) after pre-ageing treatment of 180 ℃, 15 min (a, b), 180 ℃, 2 h (c, d) and 180 ℃, 8 h (e, f) (Insets show the <100> Al SAED patterns, PFZ—precipitation free zone)
Fig.6  TEM images of matrix (a, c, e) and grain boundary precipitation (b, d, f) of the 6061 Al alloy after two-stage ageing treatment of 180 ℃, 15 min+160 ℃, 120 h (a, b), 180 ℃, 2 h+160 ℃, 120 h (c, d) and 180 ℃, 8 h+160 ℃, 120 h (e, f)
[1] Williams J C, Starke E A. Acta Mater, 2003; 51: 5775
[2] Pogatscher S, Antrekowitscha H, Leitner H, Ebner T, Uggowitzer P J. Acta Mater, 2011; 59: 3352
[3] Zhang X M. Acta Metall Sin, DOI: 10.11900/0412.1961.2013.00835
(张新明. 金属学报, DOI: 10.11900/0412.1961.2013.00835)
[4] Yang W C, Wang M P, Sheng X F, Zhang Q, Wang Z A. Acta Metall Sin, 2010; 46: 1481
(杨文超, 汪明朴, 盛晓菲, 张 茜, 王正安. 金属学报, 2010; 46: 1481)
[5] El-Menshawy K, El-Sayed A W A, El-Bedawy M E, Ahmed H A, El-Raghy S M. Corros Sci, 2012; 54: 167
[6] Svenningsen G, Lein J E, Bjørgum A, Nordlien J H, Yu Y, Nisanciouglu K. Corros Sci, 2006; 48: 226
[7] Svenningsen G, Larsen M H, Nordlien J H, Nisanciouglu K. Corros Sci, 2006; 48: 258
[8] Svenningsen G, Larsen M H, Nordlien J H, Nisanciouglu K. Corros Sci, 2006; 48: 3969
[9] Svenningsen G, Larsen M H, Walmsley J C, Nordlien J H, Nisancioglu K. Corros Sci, 2006; 48: 1528
[10] He L Z, Chen Y B, Cui J Z, Sun X F, Guan H R, Hu Z Q. Corros Sci Protect Technol, 2004; 16: 129
(何立子, 陈彦博, 崔建忠, 孙晓峰, 管恒荣, 胡壮麒. 腐蚀科学与防护技术, 2004; 16: 129)
[11] Wang Z X, Li H, Gu J H, Song R G, Zheng Z Q. Chin J Nonferrous Met, 2012; 22: 3348
(王芝秀, 李 海, 顾建华, 宋仁国, 郑子樵. 中国有色金属学报, 2012; 22: 3348)
[12] Liang W J, Rometsch P A, Cao L F, Birbilis N. Corros Sci, 2013; 76: 119
[13] Dif R, Bes B, Ehrstro J C, Sigli J C, Warner J T, Lassince P, Ribes H. Mater Sci Forum, 2000; 331-337: 1613
[14] Pan D Z, Wang Z X, Li H, Zheng Z Q. Chin J Nonferrous Met, 2010; 20: 435
(潘道召, 王芝秀, 李 海, 郑子樵. 中国有色金属学报, 2010; 20: 435)
[15] Lin L, Zheng Z Q, Li J F. Rare Met Mater Eng, 2012; 41: 1004
(林 莉, 郑子樵, 李劲风. 稀有金属材料与工程, 2012; 41: 1004)
[16] Li H, Pan D Z, Wang Z X, Zheng Z Q. Acta Metall Sin, 2010; 46: 494
(李 海, 潘道召, 王芝秀, 郑子樵. 金属学报, 2010; 46: 494)
[17] Sheng X F, Yang W C, Xia C D, Gong J, Wang M P, Li Z, Zhang Q. Chin J Nonferrous Met, 2012; 22: 1276
(盛晓菲, 杨文超, 夏承东, 龚 静, 汪明朴, 李 周, 张 茜. 中国有色金属学报, 2012; 22: 1276
[18] Wang S Q, Lu Z, Dai S L, Yang S J, Jiang H F. J Aeronaut Mater, 2003; (S1): 79
(王胜强, 陆 政, 戴圣龙, 杨守杰, 姜海峰. 航空材料学报, 2003; (增刊): 79)
[19] Buha J, Lumley R N, Crosky A G, Hono K. Acta Mater, 2007; 55: 3015
[20] Ninive P H, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara C D, Andersen S J, Friis J, Holmestad R, Løvvik O M. Acta Mater, 2014; 69: 126
[21] Wang B, Wang X J, Song H, Yan J J, Qiu T, Liu W Q, Li H. Acta Metall Sin, 2014; 50: 685
(汪 波, 王晓姣, 宋 辉, 严菊杰, 邱 涛, 刘文庆, 李 慧. 金属学报, 2014; 50: 685)
[22] Chakrabarti D J, Laughlin D E. Prog Mater Sci, 2004; 49: 389
[23] Gaber A, Gaffar M A, Mostafa M S, Abo Zeid E F. J Alloys Compd, 2007; 429: 167
[24] Weatherly G C, Perovic A, Mukhopakhyay N K, Lloyd D J, Perovic D D. Metall Mater Trans, 2001; 32A: 213
[25] Miao W F, Laughlin D E. Scr Mater, 1999; 40: 873
[26] Wang Z X, Li H, Miao F F, Sun W J, Fang B J, Song R G, Zheng Z Q. Mater Sci Eng, 2014; A590: 267
[27] Li C X. Master Thesis, Central South University, Changsha, 2010
(李朝兴. 中南大学硕士学位论文, 长沙, 2010)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[13] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
No Suggested Reading articles found!