Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (11): 1350-1356    DOI: 10.11900/0412.1961.2014.00183
Current Issue | Archive | Adv Search |
INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS
YU Lihua, DONG Hongzhi, XU Junhua()
Institute of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
Cite this article: 

YU Lihua, DONG Hongzhi, XU Junhua. INFLUENCE OF C CONTENT ON MICROSTRUCTURE, MECHANICAL PROPERTIES AND FRICTION AND WEAR PROPERTIES OF TiWCN COMPOSITE FILMS. Acta Metall Sin, 2014, 50(11): 1350-1356.

Download:  HTML  PDF(2521KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Over the past decades, traditional hard transition metal nitride films, such as TiN, have been widely used as machining and metal-forming tools coating materials due to their high hardness and chemical stability. With the rapid development of modern industrial technology, TiN has been unable to meet the requirements of modern industry, nanocomposite films because of its excellent comprehensive performance have attracted more and more scholars' attention. TiWN film as one of the TiN-based films has become a better substitute material. However the room temperature tribological property of TiWN film is not ideal, which limits its use of performance. According to the published experimental studies, C can well improve the room temperature tribological property because of its self-lubricating performance. However the effects of C content on the hardness of TiWN film is still not clear. The effects of C on mechanical property and the friction and wear property of TiWN film remain to be investigated. A series of TiWCN composite films with various C contents have been synthesized by magnetron sputtering technique. The microstructures, mechanical properties and the friction and wear property were investigated by XRD, SEM, nano-indentation, high temperature ball-on-disc tribo-meter, respectively. The results show that TiWCN composite films consist of fcc structure TiWCN phase and hcp structure Ti2N phase. With the increase of C content, the hardness of TiWCN films increases first and then decreases, the wear rate decreases first and then increases, while the friction coefficient gradually decreases. The maximum hardness of 35.97 GPa and the minimum wear rate value of 1.26×10-5 mm3·N-1·m-1 are obtained when C content is 11.25%. The minimum friction coefficient of 0.32 is obtained when C content is 13.68%. The friction coefficient and wear rate of TiWCN composite films are lower than that of TiWN films when the temperature is below 370 ℃; while the values are higher than that of TiWN films when the temperature exceeds 370 ℃. C added to the TiWN films improves mechanical properties and the room temperature friction and wear properties of the films though does not enhance the high temperature friction and wear properties of the films.

Key words:  magnetron sputtering      TiWCN composite film      microstructure      mechanical property      friction and wear property     
Received:  07 August 2014     
ZTFLH:  TG174.444  
Fund: National Natural Science Foundation of China (Nos.51074080 and 51374115)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00183     OR     https://www.ams.org.cn/EN/Y2014/V50/I11/1350

Fig.1  Atomic fraction of elements in TiWCN composite films with different C target power
Fig.2  XRD patterns of TiWCN composite films with different C contents
Fig.3  Raman spectra of TiWCN composite films with different C contents
Fig.4  Grain sizes of TiWCN composite films
Fig.5  Hardnesses and residual stresses of TiWCN composite films with different C contents
Fig.6  Friction curves (a), friction coefficient and wear rate (b) of TiWCN composite films with different C contents
Fig.7  Friction coefficient (a) and wear rate (b) of TiWN films and TiWCN composite films (Atomic fraction of C is 13.68%) at high temperature
Fig.8  XRD patterns (a) and WO3 contents (b) of TiWN films and TiWCN composite film (Atomic fraction of C is 13.68%) after friction under different temperatures
Fig.9  Wear track morphologies of TiWN films (a , b) and TiWCN composite films (c , d) at 500 ℃ (a, c) and 700 ℃ (b , d)
[1] Gustavsson L E, Baránková H, Bárdos L. Surf Coat Technol, 2006; 201: 1464
[2] Veprek S, Veprek-Heijman M J G. Surf Coat Technol, 2008; 202: 5063
[3] Pan L, Bai Y Z, Zhang D, Wang J. Rare Met, 2012; 31: 183
[4] Neidhardt J, Czigány Z, Sartory B, Tessadri R, Mitterer C. Int J Refract Met Hard Mater, 2010; 28: 23
[5] Yu L H, Xue A J, Dong S T, Xu J H. Trans Mater Heat Treat, 2010; 31: 140
(喻利花, 薛安俊, 董松涛, 许俊华. 材料热处理学报, 2010; 31: 140)
[6] Ezura H, Ichijo K, Hasegawa H, Yamamoto K, Hotta A, Suzuki T. Vacuum, 2008; 82: 476
[7] Caicedo J C, Yate L, Montes J. Surf Coat Technol, 2011; 205: 2947
[8] Manory R R, Mollica S, Ward L, Purushotham K P, Evans P, Noorman J, Perry A J. Surf Coat Technol, 2002; 155: 136
[9] Tian B, Yue W, Fu Z Q, Gu Y H, Wang C B, Liu J J. Vacuum, 2014; 99: 68
[10] Gassner G, Mayrhofer P H, Kutschej K, Mitterer C, Kathrein M. Surf Coat Technol, 2006; 201: 3335
[11] Chang C L, Hsieh T J. J Mater Process Technol, 2009; 209: 5521
[12] Yu L H, Ma B Y, Xu J H. Acta Metall Sin, 2012; 48: 469
(喻利花, 马冰洋, 许俊华. 金属学报, 2012; 48: 469)
[13] Zhang X H, Jiang J Q, Zeng Y Q, Lin J L,Wang F L, Moore J J. Surf Coat Technol, 2008; 203: 594
[14] Xu J H, Cao J, Yu L H. Acta Metall Sin, 2012; 48: 555
(许俊华, 曹 峻, 喻利花. 金属学报, 2012; 48: 555)
[15] Cheng G A, Han D Y, Liang C L,Wu X L, Zheng R T. Surf Coat Technol, 2013; 228: S328
[16] Li C Y, Chen L. Iron Steel Res, 1991; (2): 41
(李长一, 陈 亮. 钢铁研究, 1991; (2): 41)
[17] Chen R, Tu J P, Liu D G, Mai Y J, Gu C D. Surf Coat Technol, 2011; 205: 5228
[18] Xue Q J,Wang L P. Diamond-Like Carbon Film Materials. Beijing: Science Press, 2012: 18
(薛群基,王立平. 类金刚石碳基薄膜材料. 北京: 科学出版社, 2012: 18)
[19] Martínez-Martínez D, Sánchez-López J C, Rojas T C, Fernández A, Eaton P, Belin M. Thin Solid Films, 2005; 472: 64
[20] Ertürk E, Knotek O, Burgmer W, Prengel H G, Heuvel H J, Dederichs H G, Stössel C. Surf Coat Technol, 1991; 46: 39
[21] Aliofkhazraei M, Sabour Rouhaghdam A. Surf Coat Technol, 2010; 205: S51
[22] Yamamoto T, Kawate M, Hasegawa H, Suzuki T. Surf Coat Technol, 2005; 193: 372
[23] Wu W Y, Wu C H, Xiao B H, Yang T X, Lin S Y, Chen P H, Chang C L. Vacuum, 2013; 87: 209
[24] Zhang L Q, Yang H S, Pang X L, Gao K W, Volinsky A A. Surf Coat Technol, 2013; 224: 120
[25] Lin J L, Moore J J, Mishra B, Pinkas M, Sproul W D. Acta Mater, 2010; 58: 1554
[26] Ziegele H, Rebholz C, Voevodin A A, Leyland A, Rohde S L, Matthews A. Tribology Int, 1997; 30: 845
[27] Chen X Y, Wang Z H, Ma S L, Ji V. Diamond Relat Mater, 2010; 19: 1336
[28] Aizawa T, Mitsuo A, Yamamoto S, Sumitomo T, Muraishi S. Wear, 2005; 259: 708
[29] Zeman P, Musil J. Appl Surf Sci, 2006; 252: 8319
[30] Aubert A, Danroc J, Gaucher A. Thin Solid Films, 1985; 126 : 61
[31] Aizawa T, Mitsuo A, Yamamoto S, Sumitomo T, Muraishi S. Wear, 2005; 259: 708
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!