Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 271-276    DOI: 10.3724/SP.J.1037.2012.00480
Current Issue | Archive | Adv Search |
PROPERTIES AND MICROSTRUCTURE OF THIRDGENERATION X90 PIPELINE STEEL
XIA Dianxiu1,2, WANG Xuelin1,3, LI Xiucheng1, YOU Yang1, SHANG Chengjia1
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Technology Center, Jinan Iron & Steel Group Company, Limited, Jinan 250101
3) Institute of Research of Iron and Steel, Shasteel, Zhangjiagang 215625
Cite this article: 

XIA Dianxiu, WANG Xuelin, LI Xiucheng, YOU Yang, SHANG Chengjia. PROPERTIES AND MICROSTRUCTURE OF THIRDGENERATION X90 PIPELINE STEEL. Acta Metall Sin, 2013, 49(3): 271-276.

Download:  PDF(1121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mechanical properties and microstructure of the TG (third generation) X90 pipeline steelswhich have been industrially trial-produced were investigated. The results showed that the microstructure of the18.4 mm thick X90 pipeline steels consist of quasi-polygonal ferrite, lath bainite and M/A (martenite/austenite) island. The yield strength was between 615 and 660 MPa, and the tensile strength was above 720 MPa, and theyield ratio was below 0.9, the impact absorbed energy at --30 ℃ was over 200 J, and the shearing area ofdrop-weight tear test (DWTT) at -15 ℃ was more than 80%. The ratio of the soft phase (quasi-polygonal ferrite)and the hard phase (lath bainite) was about 3∶2, and the dislocation density in the lath bainite was higher, whilethat in the quasi-polygonal ferrite was lower. The EBSD results showed that the lath of the hard phase met theshear transformation characteristics, indicating that the effect of microstructure control on hard and soft phase has been achieved.

Key words:  third generation pipeline steel      multi-phases      X90      mechanical property     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00480     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/271

[1] Ishikawa N, Okastu M, Endo S, Kondo J.6thInt Pipeline Conf, Calgary: AMSE, 2006: 1


[2] Shang C J, Wang X M, Liu Q Y, Fu J Y.Int Seminar on Welding of Pipeline Steel, Arasa: December, 2011

[3] Ishikawa N, Endo S, Kondo J.JFE Technol Report, 2006; 7: 20

[4] Okatsu M, Shikanai N, Kondo J.JFE Technol Report, 2008; 12: 8

[5] Zheng L, Fu J Y.Iron Steel, 2006; 41: 1

(郑磊, 付俊岩. 钢铁, 2006; 41: 1)

[6] Suzuki N, Masamura K.Pipeline Technology Conference, Ostend:

LaboratoriumSoete and TI-KVIV, 2009: 1

[7] Zheng L, Gao S.In the Development of High Performance Pipeline Steel in China.

Beijing: Petroleum Storage & Transformation Committee Of China Petroleum Society, 2008: 95

(郑磊, 高珊. 北京管线钢国际研讨会论文集. 北京: 中国石油学会石油储运委员会, 2008: 95)

[8] Li H L, Ji L K.World Iron Steel, 2009; (1): 56

(李鹤林, 吉玲康. 世界钢铁, 2009; (1): 56)

[9] Sun X J, Li Z D, Yong Q L, Yang Z G, Weng Y Q.Sci China TechnolSci, 2012; 55: 1797

[10] Nie W J, Shang C J, Guan H L, Zhang X B, Chen S H.ActaMetall Sin, 2012; 48: 298

(聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧. 金属学报, 2012; 48: 298)

[11] Nie W J, Shang C J, You Y, Zhang X B, Subramanian S V.ActaMetall Sin, 2012; 48: 797

(聂文金, 尚成嘉, 由洋, 张晓兵, Subramanian S V. 金属学报, 2012; 48: 797)

[12] Nie W J, Wang X M, Wu S J, Guan H L, Shang C J.Sci China TechnolSci, 2012; 55: 1791

[13] Li X C, Xia D X, Wang X L, Wang X M, Shang C J.Sci China TechnolSci, 2012; 55: 1

[14] Shang C J.Echnology Forum on High Grade Pipeline Steels for Oil & Gas Industry-New Challenges

for Steels from Strategic Demand of Exploration and Transportation of Oil & Gas, Beijing: Chinese Society

for Metals (CSM), 2011: 55

(尚成嘉. 石油天然气用高性能钢技术论坛-油气开采、储运的战略需求对钢铁材料的新挑战, 北京: 中国金属学会, 2011: 55)

[15] Bhadeshia H D K H.Bainite in Steels. 2nd Ed., London: The Cambridge University Press, 2001: 142

[16] Miao C L, Shang C J, Zhang G D, Subramanian S V.Mater SciEng, 2010; A527: 4985

[17] Miao C L, Shang C J, Zurob H S, Zhang G D, Subramanian S V.Metall Mater Trans, 2012; 43A: 665

[18] He X L, Shang C J.High Performance Low Carbon Bainte Steel. Beijing: Metallugical Industry Press, 2008: 148

(贺信莱, 尚成嘉. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 148)

[19] Diazfuentes M, Izamendia A, Gutierrez I.Metall Mater Trans, 2003; 34A: 2005

[20] Miao C L, Shang C J, Wang X M, Zhang L F, Subramanian S V.ActaMetall Sin, 2010; 46: 545

(缪成亮, 尚成嘉, 王学敏, 张龙飞, Subramanian S V. 金属学报, 2010; 46: 545)

[21] You Y, Shang C J, Chen L, Subramanian S V.Mater SciEng, 2012; A546: 111

[22] Miyamoto N, Takayama G, Furuhara T.Scr Mater, 2009; 60: 1113

[23] Kitahara H, Ueji R, Tsuji N, Minamino Y.Acta Mater, 2006; 54: 1279

[24] Miao C L, Shang C J, Subramanian S V.J UnivSciTechnol Beijing, 2012; 34: 289

(缪成亮, 尚成嘉, Subramanian S V. 北京科技大学学报, 2012; 34: 289)

[25] Cui G B, Guo H, Yang S W, He X L.ActaMetall Sin, 2009; 45: 680

(崔桂彬, 郭晖, 杨善武, 贺信莱. 金属学报, 2009; 45: 680)

[26] Guo Z, Lee C S, Morris J W.Acta Mater, 2004; 52: 5511

[27] Morris J W, Lee C S, Guo Z.ISIJ Int, 2003; 43: 410

[28] Kumar A, Si

[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!