Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (3): 277-283    DOI: 10.3724/SP.J.1037.2012.00531
Current Issue | Archive | Adv Search |
PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY
HAN Guomin1, HAN Zhiqiang1, Alan A. Luo2, Anil K. Sachdev2, LIU Baicheng1, 3
1) Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Department of Mechanical,Engineering, Tsinghua University, Beijing 100084
2) Chemical Sciences and Materials Systems Laboratory, General Motors Global Research and Development Center,Warren, MI 48090-9055, USA
3) State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University,Beijing 100084
Cite this article: 

HAN Guomin, HAN Zhiqiang, Alan A. Luo, Anil K. Sachdev, LIU Baicheng. PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY. Acta Metall Sin, 2013, 49(3): 277-283.

Download:  PDF(1061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The morphology evolution of the continuous precipitate Mg17Al12 in aging process was studiedusing KKS phase field model. In the model, the chemical free energy and chemical potential for the precipitatephase and matrix were obtained by using Thermo-Calc software and database. The effects of interfacial energyanisotropy were taken into account by introducing interface anisotropy function, and the effects of micro elasticstrain energy were introduced based on the theory of micro elastic strain energy formulated by Khachaturya. It isdemonstrated that the precipitate phase has a lath shape when only the interfacial energy anisotropy wasconsidered regardless of the micro elastic strain energy.The precipitate phase grows into a diamond shape whenonly the micro elastic strain energy was taken into account regardless of the interfacial energy anisotropy. Whenboth the effects of the interfacial energy anisotropy and the micro elastic strain energy were considered in thesimulation, the precipitate phase has a lath shape with lozenge ends,which is in agreement with experimental observations. The interfacial energy anisotropy affectsthe overall morphology of the precipitate, and combiningthe interfacial energy anisotropy and the micro elastic strain energy results in the lath shape with lozenge ends.

Key words:  Mg-Al alloy      continuous precipitate      morphology evolution      thermodynamic calculation      interfacial energyanisotropy      micro elastic strain energy      phase-field model     
Received:  10 September 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00531     OR     https://www.ams.org.cn/EN/Y2013/V49/I3/277

[1] Mordike B L, Ebert T.Mater Sci Eng, 2001; A302: 37


[2] Clark J B.Acta Metall, 1968; 16: 141

[3] Celotto S.Acta Mater, 2000; 48: 1775

[4] Duly D, Simon J P, Brechert Y.Acta Metall, 1995; 43: 101

[5] Hutchinson C R, Nie J F, Gorsse S.Metall Mater Trans, 2005; 36A: 2093

[6] Xiao X L, Luo C P, Nie J F, Muddle B C.Acta Metall Sin, 2001; 37: 1

(肖晓玲, 罗承萍, 聂建峰, Muddle B C. 金属学报, 2001; 37: 1)

[7] Luo C P, Xiao X L, Liu J W, Nie J F, Muddle B C.Acta Metall Sin, 2002; 38: 709

(罗承萍, 肖晓玲, 刘江文, 聂建峰, Muddle B C. 金属学报, 2002; 38: 709)

[8] Ke C B, Ma X, Zhang X P.Acta Metall Sin, 2010; 46: 84

(柯常波, 马晓, 张新平. 金属学报, 2010; 46: 84)

[9] Yang M, Wang G, Teng C Y, Xu D S, Zhang J, Yang R, Wang Y Z.Acta Metall Sin, 2012; 48: 148

(杨梅, 王刚, 滕春禹, 徐东生, 张鉴, 杨锐, 王云志. 金属学报, 2012; 48: 148)

[10] Vaithyanathan V, Wolverton C, Chen L Q.Phys Rev Lett, 2002; 88: 125503

[11] Zhu J Z, Wang T, Ardell A J, Zhou S H, Liu Z K, Chen L Q.Acta Mater, 2004; 52: 2837

[12] Gao Y P, Liu H, Shi R, Zhou N, Xu Z, Zhu Y M, Nie J F, Wang Y.Acta Mater, 2012; 60: 4819

[13] Li M, Zhang R J, Allison J. In: Agnew S, Neelameggham N R, Nyberg E A, Sillekens W eds.,

Magnesium Technology 2010. Warrendale: The Minerals, Metals and Materials Society, 2010: 623

[14] Kim S G, Kim W T, Suzuki T.Phys Rev, 1999; 60E: 7186

[15] Hu S Y, Murray J, Weiland H, Liu Z K, Chen L Q.Calphad, 2007; 31: 303

[16] Hu S Y.PhD Dissertation, Pennsylvania State University, 2004

[17] Zhou N, Shen C, Mills M, Wang Y Z.Philos Mag, 2010; 90: 405

[18] Zhou N.PhD Dissertation, Ohio State University, 2008

[19] Khachaturyan A G.Theory of Structural Transformation in Solids.

New York: Wiley-Interscience, 1983: 204, 213

[20] Wang Y Z, Khachaturyan A G.Acta Metall Mater, 1997; 45: 759

[21] Li D Y, Chen L Q.Acta Mater, 1998; 46: 2573

[22] Vaithyanathan V, Wolverton C, Chen L Q.Acta Mater, 2004; 52: 2973

[23] Katarzyna N. Braszczynska M. In: Czerwinski F ed.,

 Magnesium Alloys-Design, Processing and Properties. Rijeka: InTech, 2011: 95
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[5] Pengcheng SONG,Wenbo LIU,Lei CHEN,Chi ZHANG,Zhigang YANG. PHASE-FIELD MODELLING OF THE MARTENSITIC TRANSFORMATION IN SHAPE MEMORYALLOY Au30Cu25Zn45[J]. 金属学报, 2016, 52(8): 1000-1008.
[6] LIANG Jingjing, ZHU Ming, YUAN Zhonghua, WANG Junwu, JIN Tao,SUN Xiaofeng, HU Zhuangqi. INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY[J]. 金属学报, 2013, 49(3): 330-340.
[7] MA Yue SU Hang PAN Tao YU Yinhong YANG Caifu ZHANG Yongquan PENG Yun. STUDY OF COMPLEX DUCTILE INCLUSIONS CONTROLLING IN MEDIUM-HIGH CARBON STEELS[J]. 金属学报, 2012, 48(11): 1321-1328.
[8] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2011, 47(2): 129-139.
[9] YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6 ALLOY
I. Modeling and Testing
[J]. 金属学报, 2010, 46(7): 781-786.
[10] YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
[J]. 金属学报, 2010, 46(7): 787-793.
[11] WANG Yi SUN Feng DONG Xianping ZHANG Lanting SHAN Aidang. THERMODYNAMIC STUDY ON EQUILIBRIUM PRECIPITATION PHASES IN A NOVEL Ni-Co BASE SUPERALLOY[J]. 金属学报, 2010, 46(3): 334-339.
[12] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
[13] Chun-guang Kuai; Zhifang Peng. ELEMENTAL PARTITIONING CHARACTERISTICS AND STABILITY OF EQUILIBRIUM PHASES DURING 450-1200℃ IN T/P91 HEAT-RESISTANT STEEL[J]. 金属学报, 2008, 44(8): 897-900 .
[14] ;. RESEARCH ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW WROUGHT SUPERALLOY[J]. 金属学报, 2008, 44(5): 540-546 .
[15] LI Xinzhong; SU Yanqing; GUO Jingjie; WU Shiping; FU Hengzhi. PHASE-FIELD RESEARCH OF MICROSTRUCTURE EVOLUTION FOR DIRECTIONALLY SOLIDIFIED PERITECTIC TRANSITION I.Extension of Trijunction[J]. 金属学报, 2006, 42(6): 599-605 .
No Suggested Reading articles found!