Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1141-1146    DOI: 10.3724/SP.J.1037.2011.00266
论文 Current Issue | Archive | Adv Search |
PROPERTIES OF Ti3XC2(X=Al, Si) WITH PLASMA SPRAYED ZrO2 THERMAL BARRIER COATING
LIU Jing, SHENG Hongfei, ZHANG Baoshan, PENG Liangming
School of Engineering Science, University of Science and Technology of China, Hefei 230026
Cite this article: 

LIU Jing SHENG Hongfei ZHANG Baoshan PENG Liangming. PROPERTIES OF Ti3XC2(X=Al, Si) WITH PLASMA SPRAYED ZrO2 THERMAL BARRIER COATING. Acta Metall Sin, 2011, 47(9): 1141-1146.

Download:  PDF(2343KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  There has been a great interest in the synthesis and characterization of Ti3AlC2 and Ti3SiC2 lamellar ceramics due to their striking combination of merits of both metals and ceramics, such as good high-temperature strength, excellent oxidation resistance. In this study, dense and high purity polycrystalline Ti3AlC2 and Ti3SiC2 lamellar ceramics were prepared from Ti, Al(Si) and C powders by reactive hot pressing in vacuum at 1450 ℃ for 1.5 h under 30 MPa. Their phase constitution, mechanical characterization and thermal properties were investigated. In addition, plasma-sprayed monolayer ZrO2 thermal barrier coatings free of metallic transition layer were prepared on the two ceramic substrates. The purity of the Ti3AlC2 and Ti3SiC2 were 91.5% and 90.3%, and the main impurity was TiC. The flexural strength and fracture toughness were 536 MPa, 7.8 MPa·m1/2 and 457 MPa, 6.8 MPa·m1/2 for Ti3AlC2 and Ti3SiC2, respectively. They took a respective average value of 8.77×10-6 and 9.14×10-6/℃ for the coefficient of thermal expansion (CTE) without remarkable temperature dependence between 25 and 1000℃. Furthermore, the coatings contributed to a more than 60\% decrease in the high temperature thermal conductivity compared to the two matrices. In general, Ti3AlC2 and ZrO2-coated Ti3AlC2 displayed superior comprehensive properties to Ti3SiC2 and ZrO2-coated Ti3SiC2. The temperature differences between the outside surface and the coating/matrix interfaces created by the thermal barrier coating were calculated to be 341 and 358 ℃ for Ti3AlC2 and Ti3SiC2 substrate, respectively.
Key words:  Ti3XC2(X=Al, Si)      mechanical property      thermal-physical property      ZrO2 coating      plasma spraying     
Received:  25 April 2011     
ZTFLH: 

A

 
Fund: 

Supported by New Century Excellent Talents in Universities programs (No.NCET-07-0790)

Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00266     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1141

[1] Barsoum M W. Prog Solid State Chem, 2000; 28: 201

[2] Whittle K R, Blackford M G, Aughterson R D, Moricca S, Lumpkin G R, Riley D P, Zaluzec N J. Acta Mater, 2010; 56: 4362

[3] Zhang H B, Bao Y W, Zhou Y C. J Mater Sci Technol, 2009; 25: 1

[4] Luo Y M, Li S Q, Pan W, Chen J, Wang R G. J Mater Sci, 2004; 39: 3137

[5] Benko E, Klimczyk P, Mackiewicz S, Barr T L, Piskorska E. Diamond Relat Mater, 2004; 13: 521

[6] Yang J, GuW, Pan L M, Zhang X M, Qiu T, Zhu S M. J Chin Ceram Soc, 2011; 39: 223

(杨建, 顾巍, 潘丽梅, 张小敏, 丘 泰, 祝社民. 硅酸盐学报, 2011; 39: 223)

[7] Chen J X, Zhou Y C. Scr Mater, 2004; 50: 897

[8] Peng L M. J Am Ceram Soc, 2007; 90: 1312

[9] Peng L M. Scr Mater, 2007; 56: 729

[10] Finkel P, Barsoum M W, Elraghy T. J Appl Phys, 2000; 87: 1701

[11] Barsoum M W, Tzenov N V, Procopio A, El–Raghy T, Ali M. J Electrochem Soc, 2001; 148: C551

[12] Mei B C, Xu X W, Zhu J Q, Liu J. Chin J Nonferrous Met, 2004; 14: 772

(梅炳初, 徐学文, 朱教群, 刘俊. 中国有色金属学报, 2004; 14: 772)

[13] Wang Z G, Zhu D G. Bull Chin Ceram Soc, 2006; 25(4): 6

(王志钢, 朱德贵. 硅酸盐通报, 2006; 25(4): 6)

[14] Zhao Z L, Feng X M, Ai T T. Bull Chin Ceram Soc, 2011; 30(1): 65

(赵卓玲, 冯小明, 艾桃桃. 硅酸盐通报, 2011; 30(1): 65)

[15] Padture N P, Gell M, Jordan E H. Science, 2002; 296: 280

[16] Maricocchi A, Bartz A, Wortman D. J Therm Spray Technol, 1997; 6: 193

[17] Riley D P, Kisi E H, Hansen T C, Hewat A W. J Am Ceram Soc, 2002; 85: 2417

[18] Zhou Y C, Sun Z M. Mater Res Innovations, 2000; 3: 286

[19] Lis J, Miyamoto Y, Pampuch R. Mater Lett, 1995; 22: 163

[20] Pietzka M A, Schuster J C. J Phase Equilib Diffns, 1994; 15: 392

[21] Wang X H, Zhou Y C. Acta Mater, 2002; 50: 3141

[22] Zhou A G, Wang C A, Huang Y. J Mater Sci, 2003; 38: 3111

[23] Zhou Y C, Sun Z M, Chen S Q, Zhang Y M. Mater Res Innovations, 1998; 2: 142

[24] Qu Y F. Modern Ceramics and Technologies. Shanghai: East China University of Science and Technology Press, 2008: 31

(曲远方. 现代陶瓷及其技术. 上海: 华东理工大学出版社, 2008: 31)

[25] Khan A, Chan H M, Harmer M P. J Am Ceram Soc, 2000; 83: 833

[26] Barsoum M W, Rawn C J, Elraghy T, Procopio, Porter W D, Wang H, Hubbard C R. J Appl Phys, 2000; 87: 8407

[27] Barsoum M W, Elraghy T, Rawn C J, Porter W D, Wang H, Payzant E A, Hubbard C R. J Phys Chem Sol, 1999; 60: 429

[28] Zhang L T, Wu J S. Scr Mater, 1998; 38: 307

[29] Schilichting K W, Padture N P, Llemens P G. J Mater Sci, 2001; 36: 3003

[30] Shao S Y, Fan Z X, Shao J D. Acta Phys Sin, 2005; 54: 3312

(邵淑英, 范正修, 邵建达. 物理学报, 2005; 54: 3312)

[31] Li Q L. China Surf Eng, 2004; 66(3): 17

(李其连. 中国表面工程, 2004; 66(3): 17)

[32] Zhang H S,Wang F C, Ma Z,Wang Q S, XianWF, Cheng Z F. Mater Mech Eng, 2007; 31: 86

(张红松, 王富耻, 马壮, 王全胜, 冼文峰, 成志芳. 机械工程材料, 2007; 31: 86)

[33] Dai G S. Thermal Transfer Theory. Beijing: Higher Education Press, 1998: 32

(戴锅生. 传热学. 北京: 高等教育出版社, 1998: 32)

[34] Gong S K, Deng L, Bi X F, Xu H B. Acta Aeronaut Astronaut Sin, 2000; 21: s25

(宫声凯, 邓亮, 毕晓方, 徐惠彬. 航空学报, 2000; 21: s25)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!