Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (9): 1135-1140    DOI: 10.3724/SP.J.1037.2011.00195
论文 Current Issue | Archive | Adv Search |
A UNIFIED ANALYTICAL MODEL FOR THE PRIMARY SOLIDIFICATION PATH IN TERNARY ALLOYS
ZHAO Guangwei, LI Xinzhong, XU Daming, FU Hengzhi, DU Yong, HE Yuehui
1) School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
2) State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
Cite this article: 

ZHAO Guangwei LI Xinzhong XU Daming FU Hengzhi DU Yong HE Yuehui. A UNIFIED ANALYTICAL MODEL FOR THE PRIMARY SOLIDIFICATION PATH IN TERNARY ALLOYS. Acta Metall Sin, 2011, 47(9): 1135-1140.

Download:  PDF(1216KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Accurate prediction for the solidification path of a multicomponent alloy and the amounts of the secondary phases presented under a given solidification condition is critical in understanding and controlling the performances of the solidified alloy materials/parts. The degree of freedom of a single-phase solidification in multicomponent alloys is at least more than one, whilch brings some difficulty in accurate predicting of the solidification path. A new analytical model for predicting a single-phase solidification paths in ternary alloys was developed based on a previously proposed unified microsegregation model for dendrite solidification of binary alloys. The present unified analytical model can not only include the three limiting solidification conditions of equilibrium, nonequilibrium and paraequilibrium solidification, but also take into account of any solid diffusion coefficient, dendrite geometrical morphologies and solidification rates, etc. The algorithms for calculating the solidification paths of ternary alloys was closely coupled with a commercial software package/database of Thermo-Calc via its TQ6-interface in order to directly access to the thermodynamic data. The availability of the proposed analytical model for predicting the primary solidification paths of ternary alloys were demonstrated by the sample computations on Al-1.0Cu-6.3Mg, Al-1.49Si-0.64Mg and Al-1.49Si-2.90Mg alloys under different solidification conditions of solid back diffusion. It was found that the solidification conditions affect the solidification paths significantly. For an alloy, especially with a nominal composition far away from the ternary eutectic point, different solid back diffusion conditions and solidification rate can result in different amounts and even different kinds of secondary phase.
Key words:  ternary alloy      solidification path      microsegregation      analytical model     
Received:  02 April 2011     
Fund: 

Supported by  National Natural Science Foundation of China (Nos.50771041 and 50801019), National Basic Research Program of China
(No.2011CB610406) and Open Project of State Key Laboratory of Powder Metallurgy of Central South University (No.2008112042)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00195     OR     https://www.ams.org.cn/EN/Y2011/V47/I9/1135

[1] Lu X S. Phase Diagram and Phase Transformation. Hefei: Press of University of Science and Technology of China, 1990: 3

(陆学善. 相图与相变. 合肥: 中国科学技术大学出版社, 1990: 3)

[2] Wang C L. Phase Diagrams and Its Application. Beijing: Higher Education Press, 2008: 17

(王崇琳. 相图理论及其应用. 北京: 高等教育出版社, 2008: 17)

[3] Mehrabian R, Flemings M C. Metall Trans, 1970; 1: 455

[4] Shawn C A, Krane J M. Mater Sci Eng, 2003; A359: 91

[5] Lacaze J, Lesoult G, Relave O, Ansara I, Riquet J P. Z Metallkd, 1987; 78: 141

[6] Boettinger W J, Kattner U R, Banerjee D K. In: Thomas B G, Beckermann C eds., Modeling of Casting, Welding and Advanced Solidification Processes VIII, Warrendale: TMS, 1998: 159

[7] Chen S L, Yang Y, Chen S W, Lu X G, Chang Y A. J Phase Equilibria Diffusion, 2009; 30: 429

[8] Dupont J N. Metall Mater Trans, 2006; 37A: 1937

[9] Xie F Y, Kraft T, Zuo Y, Moon C H, Chang Y A. Acta Mater, 1999; 47: 489

[10] Ro´osz A, Exner H E. Acta Matall Mater, 1990; 38: 375

[11] Won Y M, Thomas B G. Metall Mater Trans, 2001; 32A: 1755

[12] Matsumiya T. Mater Trans, 1992, 33: 783

[13] Xu D M, Guo J J, Fu H Z. In: Howard J ed., Proceedings of the 5th Decennial International Conference on Solidification Processing. Sheffield: The University of Sheiffield, 2007: 94

[14] Xu D M. Metall Mater Trans, 2001; 32B: 1129

[15] Zhao G W, Xu D M, Song M H, Fu H Z, Du Y, He Y H. Acta Metall Sin, 2009; 45: 956

(赵光伟, 徐达鸣, 宋梦华, 傅恒志, 杜勇, 贺跃辉. 金属学报, 2009; 45: 956)
[1] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[2] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[3] Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy[J]. 金属学报, 2017, 53(6): 641-647.
[4] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[5] Erhu YAN,Lixian SUN,Fen XU,Daming XU. PREDICTION OF THE SOLIDIFICATION PATH OF Al-6.32Cu-25.13Mg ALLOY BY A UNIFIED MICROSEGREGATION MODEL COUPLED WITH THERMO-CALC[J]. 金属学报, 2016, 52(5): 632-640.
[6] Menghua SONG, Xin LIN, Fenggang LIU, Haiou YANG, Weidong HUANG. FORMATION AND MODELING OF VERTICAL OUTSIDE WALL OF COMPOENTS INCLINING INWARD IN LASER SOLID FORMING[J]. 金属学报, 2015, 51(6): 753-761.
[7] Shaojun LIU, Guangyu YANG, Wanqi JIE. SELECTION OF THE SOLIDIFICATION PATH OF Mg-Zn-Gd TERNARY CASTING ALLOY[J]. 金属学报, 2015, 51(5): 580-586.
[8] WANG Zhe, WANG Fazhan, HE Yinhua, WANG Xin, MA Shan, WANG Huimian. NUMERICAL STUDY ON FREE-CUTTING PHASE PRECIPITATION BEHAVIOR IN Fe-Bi-Mn TERNARY ALLOY MULTIPHASE TRANSFORMATION- DIFFUSION SYSTEM[J]. 金属学报, 2014, 50(11): 1393-1402.
[9] CHEN Dandan ZHANG Haitao WANG Xiangjie CUI Jianzhong. INVESTIGATION ON MICROSEGREGATION OF Al-4.5%Cu ALLOY PRODUCED BY LOW FREQUENCY ELECTROMAGNETIC CASTING[J]. 金属学报, 2011, 47(2): 185-190.
[10] WANG Gang ZHENG Zhuo CHANG Litao XU Lei CUI Yuyou YANG Rui. CHARACTERIZATION OF TiAl PRE–ALLOYED POWDER AND ITS DENSIFICATION MICROSTRUCTURE[J]. 金属学报, 2011, 47(10): 1263-1269.
[11] YANG Chubin LIU Lin ZHAO Xinbao LIU Gang ZHANG Jun FU Hengzhi. DENDRITE ARM SPACINGS AND MICROSEGREGATIONS IN <001>  AND <011> ORIENTATED SINGLE CRYSTAL SUPERALLOYS DD407[J]. 金属学报, 2011, 47(10): 1246-1250.
[12] GAN Chunlei LIU Xuefeng HUANG Haiyou XIE Jianxin. FABRICATION PROCESS, MICROSTRUCTURE AND MECHANICAL PROPERTIES OF BFe10–1–1 ALLOY TUBES BY CONTINUOUS UNIDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2010, 46(12): 1549-1556.
[13] LIU Gang LIU Lin ZHAO Xinbao ZHANG Weiguo JIN Tao ZHANG Jun FU Hengzhi. MICROSTRUCTURE AND MICROSEGREGATION IN A Ni-BASED SINGLE CRYSTAL SUPERALLOY DIRECTIONALLY SOLIDIFIED UNDER HIGH THERMAL GRADIENT[J]. 金属学报, 2010, 46(1): 77-83.
[14] CAI Zhaozhen ZHU Miaoyong. MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND[J]. 金属学报, 2009, 45(8): 949-955.
[15] ZHAO Guangwei XU Daming SONG Menghua FU Hengzhi DU Yong HE Yuehui. THERMO–CALC LINKED COMPUTATIONS OF SOLIDIFICATION PATHS OF TERNARY ALLOYS USING AN EXTENDED UNIFIED MICROSEGREGATION MODEL[J]. 金属学报, 2009, 45(8): 956-963.
No Suggested Reading articles found!