Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 720-726    DOI: 10.3724/SP.J.1037.2010.00695
论文 Current Issue | Archive | Adv Search |
STUDY ON THE MARTENSITE IN LOW CARBON CrNi3Si2MoV STEEL TREATED BY Q&P PROCESS
WANG Cunyu, SHI Jie, CAO Wenquan, HUI Weijun, WANG Maoqiu, DONG Han
Institute for Structural Materials, Central Iron & Steel Research Institute, Beijing 100081
Cite this article: 

WANG Cunyu SHI Jie CAO Wenquan HUI Weijun WANG Maoqiu DONG Han. STUDY ON THE MARTENSITE IN LOW CARBON CrNi3Si2MoV STEEL TREATED BY Q&P PROCESS. Acta Metall Sin, 2011, 47(6): 720-726.

Download:  PDF(3218KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The martensite in low carbon CrNi3Si2MoV steel treated by Q&P (quenching and partitioning) process was characterized by means of SEM, TEM, EBSD and nano intender. The effect of martensite on uniaxial tension behaviors was discussed. The results showed that initial martensite phase formed at the first quenching step, whose carbon content was lowered due to its carbon diffusion into untransformed austenite during partitioning step. However, the martensite phase formed at the final quenching steconsisted of only one single set of packet with lath thicknes about 0.1—0.2 μm, which was thinner than that of the initial martensie lath. It was found that the carbon content and hardness of the martenite formed in the final quenching step were higher than thoe of initial martensite, which deformed cooperatively with other phases and played a role of strengthening phase during deformation process. In addition, large sized carbonitride and oxide pecipitations induced nucleation and exansion of crack during deformation rocess.
Key words:  martensite      retained austenite             Q&P process             mechanical property      high strength steel     
Received:  23 December 2010     
ZTFLH: 

TG113.12

 
Fund: 

Supported by National Basic Research Program of China (No.2010CB630803) and High Technology Research and Development Program of China (No.2009AA033401)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00695     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/720

[1] Edmonds D V, He K Rizzo F C, Cooman B C De, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438–440: 25

[2] Hsu T Y. Heat Treat, 2007; 22: 1

(徐祖耀. 热处理, 2007, 22: 1)

[3] Rizzo F, Martins A R, Speer J G. Mater Sci Forum, 2007;539–543: 4476

[4] Zhong N, Wang X D, Huang B X, Rong Y H, Wang L. In: Lee H C ed., The 3rd International Coference on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 885

[5] DeCooman B C, Speer J G. In: Lee H C eds, The 3rd International Cnferece on Advanced Structural Steels, Gyeongju: The Korean Institute of Metals and Materials, 2006: 798

[6] Wang C Y, Shi J, Cao W Q, Dong H. Trans Mater Heat Treat, 2010; 31(6): 83

(王存宇, 时捷, 曹文全, 董瀚. 材料热处理学报, 2010; 31(6): 83)

[7] Wang C Y. PhD Thesis. Central Iron & Steel Research Institute, Beijing, 2010

(王存宇. 钢铁研究总院博士学位论文, 北京, 2010)

[8] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426–432: 1089

[9] Gerdeman F L H, Speer J G, Matlock D K. In: Margaret A B ed., Materials Science and Technology Conference Proceedings, New Orleans: Association for Iron and Steel Technology, 2004: 439

[10] MaM T,Wu B R. Dual Phase Steel–Physical and Mechanical Metallurgy, Beijing: Metallurgical Industry Press,2009: 117

(马鸣图, 吴宝榕. 双相钢--物理和力学冶金. 北京: 冶金工业出版社, 2009: 117)

[11] Hsu T Y. Martensitic Transformation and Martensite. 2nd Ed, Beijing: Science Press, 1999: 228

(徐祖耀. 马氏体相变与马氏体. 第二版. 北京: 科学出版社, 1999: 228)

[12] Yu D G. Fe–base Martensitic Aging–Tempering Transformation Theory and the Strength and Toughness. Shanghai: Shanghai Jiaotong University Press, 2008: 194

(俞德刚. 铁基马氏体时效--回火转变理论及其强韧性. 上海: 上海交通大学出版社, 2008: 194)

[13] Wang C Y, Shi J, CaoWQ, Dong H. Mater Sci Eng, 2010; A527: 3442

[14] Cox T B, Low J R. Metall Trans, 1974; 5: 1457

[15] Quentin Furnemont. PhD Thesis, Universit´e catholique de Louvain, 2003

[16] Pascal Jacques. PhD Thesis, Universit´e catholique de Louvain, 1998

[17] Marder A R, Krauss G. Trans ASM, 1969; 62: 957

[18] Krauss G, Marder A R. Metall Trans, 1971; 2: 2343

[19] Marder J M, Marder A R. Trans ASM, 1969; 62: 1

[20] Su D D, Li J J. High–Temperature Metallography of Steel In situ Observation of Phase Transformation, Tianjin:Tianjin university Press, 2007: 144

(苏德达, 李家俊. 钢的高温金相学--钢的相变过程原位观察. 天津: 天津大学出版社, 2007: 144)

[21] Morito S, Saito H, Ogawa T, Furuhara T, Maki T. ISIJ Int, 2005; 45: 91

[22] Erdogan M. J Mater Sci, 2002; 37: 3623

[23] Hasegawa K, Kawamura K, Urabe T. ISIJ Int, 2004; 44: 603

[24] Pychmintsev I Y, Savrai R A, DeCooman B C. In: Decooman B C ed. Conference on TRIP–Aided High Strength Ferrous Alloys, Ghent: Mainz in Aachen, 2002: 79

[25] Hu G X. Metallography. Shanghai: Shanghai Scientific & Technical Publishers, 1980: 260

(胡庚祥, 金属学. 上海: 上海科学技术出版社, 1980: 260)

[26] Tvergaard V. Adv Appl Mech, 1990; 27: 83

[27] McMeeking R M. J Mech Phys Solids, 1977; 25: 357

[28] Xia L, Shih C F. J Mech Phys Solids, 1996; 44: 603

[29] Xia L, Shih C F. J Mech Phys Solids, 1995; 43: 233
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!