Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (6): 727-734    DOI: 10.3724/SP.J.1037.2011.00028
论文 Current Issue | Archive | Adv Search |
HORIZONTAL ELECTROREFINING OF Al IN Na3AlF6–LiF MOLTEN SALT
JIA Ming, TIAN Zhongliang, LAI Yanqing, LIU Fangyang, LI Jie, LIU Yexiang
School of Metallurgical Science and Engineering, Central South University, ChangSha 410083
Cite this article: 

JIA Ming TIAN Zhongliang LAI Yanqing LIU Fangyang LI Jie LIU Yexiang. HORIZONTAL ELECTROREFINING OF Al IN Na3AlF6–LiF MOLTEN SALT. Acta Metall Sin, 2011, 47(6): 727-734.

Download:  PDF(2434KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A creative and simple horizontal electrorefining method had been developed for high pure aluminum production in fluoride molten salt. Impure primary aluminum was purified due to the different electronegativity between Al and impurities during electrorefining. Pre–electrolysis was effective in the purification of electrolyte, concentration of impurities such as Cu, Si and P were reduced to 3.2×10−6, 14×10−6 and 1.5×10−6, respectively. Aluminum electrorefining could run steady with current density as high as 800 mA/cm2, hich indicated that the uneven current density istribution had no bad effect on the electrochemical process. The anode nd cathode were both covered by Na3AlF6–LiF electrolyte, hich argely reduced the oxidation of aluminum at hih temperature and yieded a igh curent efficiency of 98.6%. The analysis of the anode feed and refined aluminum showed a remarkabe reduction of the mass fraction of Cu, from 14.5×10−6 to 0.9×10−6. Besides, particular mention should be made of efficient removaof impuritis likF, Si and Zn, the purity of electrorefined aluminum was above 99.99%.
Key words:  aluminum      purity      electrolyte      electrorefining      current efficiency     
Received:  12 January 2011     
ZTFLH: 

TF111.522

 
Fund: 

Supported by Specialized Research Fund for the Doctoral Program of Higher Education (No.200805331120), Hunan Provincial Innovation Foundation for Postgraduate and Graduate Degree Thesis (No.CX2009B036) and Innovation Foundation of Central South University (No.2010bsxt02)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00028     OR     https://www.ams.org.cn/EN/Y2011/V47/I6/727

[1] Liu Y X, Li JModern Aluminum Electrolysis. Beijing:Metallurgicl Indusry Press, 2008: 520

(刘业翔, 李劼.现代铝电解. 北京: 冶金工业出版社, 2008: 520)

[2] James W E. JOM, 2007; 59: 30

[3] De Nora V. Aluminium, 2000; 76: 998

[4] Qiu Z X. Smelting Aluminum in Pre–baked Cell. 3nd Ed., Beijing: Metallurgical Industry Press, 2005: 413

(邱竹贤. 预焙槽炼铝. 第三版. 北京: 冶金工业出版社, 2005: 413)

[5] Solheim A, Rolseth S. Metall Mater Trans, 1996; 10B: 739

[6] Craig W B. In: Peterson R D ed., Light Metals Proceedings. Nashville: Miner Metals & Mater Soc, 2000: 391

[7] Mariola S, Katowice J B. Aluminum, 2005; 3: 81

[8] Johansen K, Sadoway D R, Myhre B, Engvoll M, Engvoll K. US Pat, 20070215483, 2007

[9] Slater S A, Raraz A G, Willit J L. Sep Purif Technol, 1999; 15: 197

[10] Kononov A, Kuznetsov S, Polyakov E. J Alloys Compd, 1995; 218: 173

[11] Ueda M, Ohmura T, Konda S, Sasaki T, Ohtsuka T, Ishikawa T. J Appl Electrochem, 2001; 31: 871

[12] Schwarz V, Wendt H. J Appl Electrochem, 1995; 25: 34

[13] Kanda M, Sato K, Kimura E. In: Lin R Y, Chang Y A, Reddy R G, Liu C T eds., Light Metals Proceedings. Anaheim: Miner Metals & Mater Soc, 1996: 1087

[14] Olson J M, Carleton K L. J Electrochem Soc, 1981; 128: 2698

[15] Jia M, Tian Z L, Lai Y Q, Li J, Yi J G, Yan J F, Liu Y X. Acta Phys Sin, 2010, 59: 1938

(贾 明, 田忠良, 赖延清, 李劼,伊继光, 闫剑锋, 刘业翔. 物理学报. 2010; 59: 1938)

[16] Zhang Z X, Wang E K. Electrochemistry Principle and Method. Beijing: Science Press, 2000: 55

(张祖训, 汪尔康. 电化学原理和方法. 北京: 科学出版社, 2000: 55)

[17] Wicks C E, Block F E. Thermodynamic Properties of 65 Elements–Their Oxides, Halides, Carbides, and Nitrides. Washington: United States Government Printing, 1963: 1

[18] Liu D R, Yang Z H, LiWX, Qiu S L, Luo Y T. Electrochim Acta, 2001; 31: 871

[19] Boen R, Bouteillon J. J Appl Electrochem, 1983; 13: 277

[20] Cohen U, Huggins R A. J Electrochem Soc, 1976; 123: 381
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[5] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[6] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[7] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[8] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[9] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[10] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[11] NIE Jinfeng, WU Yuli, XIE Kewei, LIU Xiangfa. Microstructure and Thermal Stability of Heterostructured Al-AlN Nanocomposite[J]. 金属学报, 2022, 58(11): 1497-1508.
[12] GAO Yunming, HE Lin, QIN Qingwei, LI Guangqiang. ZrO2 Solid Electrolyte Aided Investigation on Electrodeposition in Na3AlF6-SiO2 Melt[J]. 金属学报, 2022, 58(10): 1292-1304.
[13] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[14] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[15] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
No Suggested Reading articles found!