Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (3): 44-49    DOI:
Current Issue | Archive | Adv Search |
EFFECT OF LOADING RATE AND TEMPERATURE ON DUCTILE-BRITTLE TRANSITION OF A CARBON STEEL
LIU Yongning;ZHU Jinhua;ZHOU Huijiu;A Kildegaard;J. A. Kristensen Department of Materials Science and Engineering; Xi'an Jiaotong University Department of Mechanical Engineering; Aalborg University; Denmark Department of Materials Science and Engineering;Xi'an Jiaotong University; Xi'an 710049
Cite this article: 

LIU Yongning;ZHU Jinhua;ZHOU Huijiu;A Kildegaard;J. A. Kristensen Department of Materials Science and Engineering; Xi'an Jiaotong University Department of Mechanical Engineering; Aalborg University; Denmark Department of Materials Science and Engineering;Xi'an Jiaotong University; Xi'an 710049. EFFECT OF LOADING RATE AND TEMPERATURE ON DUCTILE-BRITTLE TRANSITION OF A CARBON STEEL. Acta Metall Sin, 1990, 26(3): 44-49.

Download:  PDF(711KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dynamic fracture toughness of a mild steel has been studied atdifferent loading rates and temperatures. The material exhibits a transition fromtough to brittle fracture with the changing of loading rate alone. Analysis of thefracture process by the theory of thermal activation suggests that the fracture activ-ation energy approximates the bond energy on the {100} plane of a unit cell. The tough-ness can be resolved into two parts, J_(Id)=J_a+J_t. where J_a is the athermal part, beingindependent on temperature and loading rate, while J_t=(K/K_0)~(1/″) exp (Q_f/nkT), whichcontrols the fracture process is temperature and loading rate dependent. the transi-tion of fracture mechanism caused by both temperature and loading rate is associatedwith the thermal movement of atoms.
Key words:  mild steel      brittle fracture transition      loading rate      temperature      activation energy     
Received:  18 March 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I3/44

1 Hahn G T. Metall Trans, 1984; 15A: 947
2 Knott J F. In: Valluri S R, Taplin D M R, Ramarao P, Knott J F, Dubey R eds., Advances in Fracture Rescarch (Fracture 84) . Vol. I, Oxford: Pergamon, 1984: 83
3 Ritchie R O, Server W L, Wullaert R A. Metall Trans, 1979; 10A: 1557
4 Bowen P. Pruce S G, Knott J F. Acta Metall, 1987; 35: 1735
5 Thomson R M. J Phys Chem Solids, 1987; 48: 965
6 Serrver W L, Wulla R A, Ritchie R O. Trans ASME, Ser H: J Eng Mater Technol. 1980; 102: 192
7 Blumenauer H, Wagner I. In: Valluri S R, Taplin D M R, Ramarao P. Knott J E、Dubey R eds., Advances in Fracture Research (Fracture 84) , Vol. V, Oxford: Pergamon, 1984: 3145
8 Kocks U F, Argon A S, Ashby M F. Thermodynamics and Kinetics of Slip, Pergamon. 1975
9 Bryan R H, Bass B R, Merkle J G. Pugh C E, Robinson G C, Whitman G D. Eng Fract Mech. 1986; 23: 81
10 Guy A O, Introduction to Materials Science, New York: McGrama-Hill. 1972: 465
11 方俊鑫,陆栋.固体物理学(上册),上海科学技术出版社,1980
12 Knott J F. J Iron Steel Inst. 1966; 204: 104w
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[3] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[7] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[8] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[9] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[10] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[11] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[12] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[13] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[14] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[15] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
No Suggested Reading articles found!