Please wait a minute...
Acta Metall Sin  1990, Vol. 26 Issue (3): 50-54    DOI:
Current Issue | Archive | Adv Search |
FATIGUE CRACK PROPAGATION AND CLOSURE EFFECT IN FERRITE-MARTENSITE DUAL-PHASE STEEL
DENG Rongying;YE Zhijun;LIU Shuhua;ZOU Dingqiang Institute of Mechanics; Academia Sinica; Beijing China Academy of Railway Sciences; Beijing
Cite this article: 

DENG Rongying;YE Zhijun;LIU Shuhua;ZOU Dingqiang Institute of Mechanics; Academia Sinica; Beijing China Academy of Railway Sciences; Beijing. FATIGUE CRACK PROPAGATION AND CLOSURE EFFECT IN FERRITE-MARTENSITE DUAL-PHASE STEEL. Acta Metall Sin, 1990, 26(3): 50-54.

Download:  PDF(1159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of ferrite content in ferrite-martensite dual-phase steel onthe initiation and propagation of fatigue crack and the plastic deformation at cracktip has been studied. In a range of ferrite content from 24.2 to 41.5%, the opti-mum seems to be 33.8%, of which the crack initiation will be prolonged, the thre-shold value increased, the propagation rate decreased and the closure stress intensityfactor increased. As the propagation force is described by effective stress intensityfactor, three steels with various ferrite contents will show the same propagationbehaviour on da/dN vs △K_(off) curve. It is shown that the closure effect increaseswith the decrease in △K at the fatigue crack tip. When △K equals to △K_(th), theclosure effect reaches a maximum value of 0.7 in a dual-phase steel with 33.8%ferrite.
Key words:  dual-phase steel      fatigue crack      closure effect     
Received:  18 March 1990     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1990/V26/I3/50

1 Rashid M S. SAE Trans, 1976; 85: 938
2 Davies R G. Metall Trans, 1978; 7A: 41
3 Suzuki H, Mc Evily A J. Metall Trans, 1979; 10A: 475
4 Ishihara T. J Mater Sci, 1983; 18: 103
5 邓蓉英,马运福.机械强度,1982;(1) :57
6 邓蓉英,周爱华等.金属学报待发表
7 Dutta V B, Suresh S, Ritchie RO. Metall Trans, 1984; 15A: 1193
8 Gray G T, Williams J C, Thompson A W. Metall Trans, 1983; 14A: 421
9 Gerberich W W, Yu W, Esaklul K. Metall Trans, 1984; 15A: 875
10 Deng R, Yu G, Li H. Theoretical and Applied Fracture Mechamcs, 1987; 7: 37
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[3] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[4] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[5] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[6] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[9] Chao XU, Qiliang NAI, Zhihao YAO, He JIANG, Jianxin DONG. Grain Boundary Oxidation Effect of GH4738 Superalloy on Fatigue Crack Growth[J]. 金属学报, 2017, 53(11): 1453-1460.
[10] Qiliang NAI,Jianxin DONG,Maicang ZHANG,Zhihao YAO. INFLUENCE OF MULTI-MICROSTRUCTURE INTERACTION ON FATIGUE CRACK GROWTH RATE OF GH4738 ALLOY[J]. 金属学报, 2016, 52(2): 151-160.
[11] YANG Jian, DONG Jianxin, ZHANG Maicang. HIGH TEMPERATURE FATIGUE CRACK GROWTH BEHAVIOR OF A NOVEL POWDER METALLURGY SUPERALLOY FGH98[J]. 金属学报, 2013, 49(1): 71-80.
[12] NIE Wenjin SHANG Chengjia GUAN Hailong ZHANG Xiaobing CHEN Shaohui. CONTROL OF MICROSTRUCTURES OF FERRITE/ BAINITE (F/B) DUAL-PHASE STEELS AND ANALYSIS OF THEIR RESISTANCE TO DEFORMATION BEHAVIOR[J]. 金属学报, 2012, 48(3): 298-306.
[13] LI Wei CHEN Zhenhua CHEN Ding TENG Jie. GROWTH BEHAVIOR OF FATIGUE CRACK IN SPRAY-FORMED SiCp/Al-7Si COMPOSITE[J]. 金属学报, 2011, 47(1): 102-108.
[14] TANG Lian LU Lei. EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu[J]. 金属学报, 2009, 45(7): 808-814.
[15] ZHANG Zhefeng ZHANG Peng TIAN Yanzhong ZHANG Qingke QU Shen ZOU Hefei DUAN Qiqiang LI Shouxin WANG Zhongguang. INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 788-800.
No Suggested Reading articles found!