|
|
A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere |
CONG Hongda1, WANG Jinlong1( ), WANG Cheng2,3, NING Shen1, GAO Ruoheng1, DU Yao2, CHEN Minghui1, ZHU Shenglong2, WANG Fuhui1 |
1.Shenyang National Key Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3.Jiangsu JITRI Road Engineering Technology and Equipment Research Institude Co. Ltd., Xuzhou 220005, China |
|
Cite this article:
CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere. Acta Metall Sin, 2022, 58(8): 1083-1092.
|
Abstract CB2 steel (ZG12Cr9Mo1Co1NiVNbNB) is a ferritic stainless steel with excellent creep properties at high temperature (550-700oC) and is mainly used in 600oC ultrasupercritical units. The poor oxidation resistance of the material limits its practical applications in harsh, high-temperature environments, in which the steam unit faces high-temperature water vapor for a long period of time. Therefore, surface modification or coating has become an important means to improve the high-temperature oxidation resistance of the material. An inorganic silicate coating has the advantages of high thermal-chemical stability, similar thermal expansion coefficient, and simple preparation process, which can significantly improve the oxidation and corrosion resistance of the material. In this study, a new type of inorganic silicate composite coating was designed, based on the CB2 steel. The oxidation behavior of CB2 steel and coated specimens at 650oC high-temperature steam atmosphere for 1000 h was studied by using a high-temperature water vapor simulation device. The results showed that the oxidation rate of the coated CB2 steel was 30 times slower than that of uncoated CB2 steel; thus, the coating exhibited a good protective effect. After 1000 h of oxidation, the oxide scale on the CB2 steel was loose and cracked with obvious voids and the oxidation product was mainly composed of Fe2O3. The inorganic silicate composite coating significantly improved the oxidation resistance of CB2 steel; after 1000 h of oxidation, no spallation areas or cracks were found.
|
Received: 22 January 2021
|
|
Fund: National Natural Science Foundation of China(51671053);National Natural Science Foundation of China(51801021);Ministry of Industry and Information Technology Project(MJ-2017-J-99) |
About author: WANG Jinlong, associate professor, Tel: (024)83691562, E-mail: wangjinlong@mail.neu.edu.cn
|
1 |
Yang Y P, Xu C, Xu G, et al. A new conceptual cold-end design of boilers for coal-fired power plants with waste heat recovery [J]. Energy Convers. Manage., 2015, 89: 137
doi: 10.1016/j.enconman.2014.09.065
|
2 |
Yang Y P, Yang Z P, Xu G, et al. Situation and prospect of energy consumption for China's thermal power generation [J]. Proc. CSEE, 2013, 33(23): 1
|
|
杨勇平, 杨志平, 徐 钢 等. 中国火力发电能耗状况及展望 [J]. 中国电机工程学报, 2013, 33(23): 1
|
3 |
Tumanovskii A G, Shvarts A L, Somova E V, et al. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants [J]. Therm. Eng., 2017, 64: 83
doi: 10.1134/S0040601517020082
|
4 |
Wang J L, Zhang X D, Hou M J. Development and expectation of application of ultra-supercritical double-reheat steam turbines [J]. Therm. Power Gener., 2017, 46(8): 11
|
|
王建录, 张晓东, 侯明军. 超超临界二次再热机组汽轮机应用现状与展望 [J]. 热力发电, 2017, 46(8): 11
|
5 |
Lin F S, Xie X S, Zhao S Q, et al. Selection of superalloys for superheater tubes of domestic 700oC A-USC boilers [J]. J. Chin. Soc. Power Eng., 2011, 31: 960
|
|
林富生, 谢锡善, 赵双群 等. 我国700℃超超临界锅炉过热器管用高温合金选材探讨 [J]. 动力工程学报, 2011, 31: 960
|
6 |
Xiang B. Research on environmentally friendly and water-based architectural heat insulation coatings [D]. Guangzhou: South China University of Technology, 2012
|
|
向 波. 环保型水性建筑保温隔热涂料的研究 [D]. 广州: 华南理工大学, 2012
|
7 |
Xia Z G. Development of a new water-based metal anti-corrosion coating [D]. Yangzhou: Yangzhou University, 2013
|
|
夏中高. 新型水性金属防腐蚀涂料的研制 [D]. 扬州: 扬州大学, 2013
|
8 |
Xie D M, Hu J M, Tong S P, et al. The development of zinc-rich paints [J]. J. Chin. Soc. Corros. Prot., 2004, 24: 314
|
|
谢德明, 胡吉明, 童少平 等. 富锌漆研究进展 [J]. 中国腐蚀与防护学报, 2004, 24: 314
|
9 |
Wei X Y. Super corrosion retarding water borne inorgannic zinc-rich coatings [J]. Paint Coat. Ind., 2007, 37(5): 40
|
|
魏向阳. 新一代水性无机富锌涂料 [J]. 涂料工业, 2007, 37(5): 40
|
10 |
Tan X J, Wang W, Liu Y S, et al. The preparation of nano-inorganic composite coatings and its performance study [J]. Shandong Chem. Ind., 2018, 47(9): 22
|
|
谭向君, 王 维, 刘玉硕 等. 纳米-无机复合涂料的制备及其性能研究 [J]. 山东化工, 2018, 47(9): 22
|
11 |
Zhu W, Li W F, Mu S L, et al. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties [J]. Appl. Surf. Sci., 2017, 405: 157
doi: 10.1016/j.apsusc.2017.02.046
|
12 |
Qomariyah L, Sasmita F N, Novaldi H R, et al. Preparation of stable colloidal silica with controlled size nano spheres from sodium silicate solution [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 395: 012017
|
13 |
Tänzer R, Yu J, Stephan D. Alkali activated slag binder: Effect of cations from silicate activators [J]. Mater. Struct., 2017, 50: 90
doi: 10.1617/s11527-016-0962-x
|
14 |
Cheng L H, Luo Y, Ma S H, et al. Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash [J]. J. Alloys Compd., 2019, 786: 791
doi: 10.1016/j.jallcom.2019.01.368
|
15 |
Peng G Y, Zhai J Q. Preparation of high SiO2/K2O ratio potassium silicate solution and its zinc-rich coatings [J]. Paint Coat. Ind., 2011, 41(8): 27
|
|
彭刚阳, 翟金清. 高模数硅酸钾溶液及其富锌涂料的制备 [J]. 涂料工业, 2011, 41(8): 27
|
16 |
Parashar G, Srivastava D, Kumar P. Ethyl silicate binders for high performance coatings [J]. Prog. Org. Coat., 2001, 42: 1
doi: 10.1016/S0300-9440(01)00128-X
|
17 |
Rui G. Water based high temperature resistant and antioxidation inorganic coatings [J]. Shanghai Coat., 2011, 49(4): 23
|
|
芮 龚. 水性耐高温抗氧化无机涂料 [J]. 上海涂料, 2011, 49(4): 23
|
18 |
Duan D F. Preparation of TiO2 NPs and its effect on the surface of the external wall coating [D]. Chongqing: Chongqing University, 2013
|
|
段东方. 纳米TiO2的制备及对外墙涂料表面改性研究 [D]. 重庆: 重庆大学, 2013
|
19 |
Qiu X, Tariq N U H, Wang J Q, et al. Microstructure, microhardness and tribological behavior of Al2O3 reinforced A380 aluminum alloy composite coatings prepared by cold spray technique [J]. Surf. Coat. Technol., 2018, 350: 391
doi: 10.1016/j.surfcoat.2018.07.039
|
20 |
He Y H, Li H B, Ou L G, et al. Preparation and characterisation of water-based aluminium pigments modified with SiO2 and polymer brushes [J]. Corros. Sci., 2016, 111: 802
doi: 10.1016/j.corsci.2016.06.014
|
21 |
Shao G F, Wang Q Q, Wu X D, et al. Evolution of microstructure and radiative property of metal silicide-glass hybrid coating for fibrous ZrO2 ceramic during high temperature oxidizing atmosphere [J]. Corros. Sci., 2017, 126: 78
doi: 10.1016/j.corsci.2017.06.017
|
22 |
Khan A, Huang Y, Dong Z, et al. Effect of Cr2O3 nanoparticle dispersions on oxidation kinetics and phase transformation of thermally grown alumina on a nickel aluminide coating [J]. Corros. Sci., 2019, 150: 91
doi: 10.1016/j.corsci.2019.01.032
|
23 |
Liu X T, Wang D D, Wu Y K, et al. Investigation on corrosion and wear resistance of MgO-Al2O3 composite coating prepared by plasma electrolytic oxidation [J]. Int. J. Appl. Ceram. Technol., 2020, 17: 1017
doi: 10.1111/ijac.13458
|
24 |
Liao Y M, Zhang B, Chen M H, et al. Self-healing metal-enamel composite coating and its protection for TiAl alloy against oxidation under thermal shock in NaCl solution [J]. Corros. Sci., 2020, 167: 108526
doi: 10.1016/j.corsci.2020.108526
|
25 |
Chen M H, Li W B, Shen M L, et al. Glass coatings on stainless steels for high-temperature oxidation protection: Mechanisms [J]. Corros. Sci., 2014, 82: 316
doi: 10.1016/j.corsci.2014.01.033
|
26 |
Yu Z D, Chen M H, Chen K, et al. Corrosion of enamel with and without CaF2 in molten aluminum at 750oC [J]. Corros. Sci., 2019, 148: 228.
doi: 10.1016/j.corsci.2018.12.016
|
27 |
Seybolt A U. Observations on the Fe-Cr-O system [J]. J. Electrochem. Soc., 1960, 107: 147
doi: 10.1149/1.2427643
|
28 |
Shen J N, Zhou L J, Li T F. High-temperature oxidation of Fe-Cr alloys in wet oxygen [J]. Oxid. Met., 1997, 48: 347
doi: 10.1007/BF01670507
|
29 |
Nagl M M, Evans W T. The mechanical failure of oxide scales under tensile or compressive load [J]. J. Mater. Sci., 1993, 28: 6247
doi: 10.1007/BF01352181
|
30 |
Gesmundo F, Hou P Y. Analysis of pore formation at oxide-alloy interfaces-Ⅱ: Theoretical treatment of vacancy condensation for immobile interfaces [J]. Oxid. Met., 2003, 59: 63
doi: 10.1023/A:1023065915321
|
31 |
Cotterell B, Chen Z. Buckling and cracking of thin films on compliant substrates under compression [J]. Int. J. Fract., 2000, 104: 169
doi: 10.1023/A:1007628800620
|
32 |
Wang J S, Evans A G. Effects of strain cycling on buckling, cracking and spalling of a thermally grown alumina on a nickel-based bond coat [J]. Acta Mater., 1999, 47: 699
doi: 10.1016/S1359-6454(98)00328-0
|
33 |
Li Y, Cheng X D, Cao W, et al. Fabrication of adiabatic foam at low temperature with sodium silicate as raw material [J]. Mater. Des., 2015, 88: 1008
doi: 10.1016/j.matdes.2015.09.078
|
34 |
Qu S S. Research on the preparation of high-temperature and temperature shock resistance potassium silicate coating [D]. Shenyang: Shenyang University of Technology, 2018
|
|
曲伸伸. 耐高温抗热震硅酸钾涂层制备技术研究 [D]. 沈阳: 沈阳工业大学, 2018
|
35 |
Francisco J S, Capelossi V R, Aoki I V. Evaluation of a sulfursilane anticorrosive pretreatment on galvannealed steel compared to phosphate under a waterborne epoxy coating [J]. Electrochim. Acta, 2014, 124: 128
doi: 10.1016/j.electacta.2013.09.144
|
36 |
Yang C F, Smyrl W H, Cussler E L. Flake alignment in composite coatings [J]. J. Membr. Sci., 2004, 231: 1
doi: 10.1016/j.memsci.2003.09.022
|
37 |
Liu H W, Xu G, Song G L, et al. An EIS investigation of the mechanism of aluminum polyphosphate as anti-rust pigment [J]. J. Chin. Soc. Corros. Rrot., 1997, 17: 215
|
|
刘宏伟, 许 刚, 宋光铃 等. 防锈颜料三聚磷酸铝作用机理的EIS研究 [J]. 中国腐蚀与防护学报, 1997, 17: 215
|
38 |
Xie M L, Luo D L, Xian X B, et al. Effect of alumina on the properties of ultra-high pressure sintered silicon carbide [J]. J. Chin. Ceram. Soc., 2008, 36: 1144
|
|
谢茂林, 罗德礼, 鲜晓斌 等. 氧化铝添加量对超高压烧结碳化硅性能的影响 [J]. 硅酸盐学报, 2008, 36: 1144
|
39 |
Sun Y X, Wang Y Z, He Y L. Effects of RE oxides on plasma sprayed Al2O3 coatings [J]. Mater. Prot., 2001, 34(6): 8
|
|
孙永兴, 王引真, 何艳玲. 稀土氧化物添加剂对Al2O3等离子喷涂层的影响 [J]. 材料保护, 2001, 34(6): 8
|
40 |
Sadeghimeresht E, Eklund J, Simon J P, et al. Effect of water vapor on the oxidation behavior of HVAF-sprayed NiCr and NiCrAlY coatings [J]. Mater. Corros., 2018, 69: 1431
|
41 |
Ostwald C, Grabke H J. Initial oxidation and chromium diffusion. I. Effects of surface working on 9-20% Cr steels [J]. Corros. Sci., 2004, 46: 1113
doi: 10.1016/j.corsci.2003.09.004
|
42 |
Huang X X, Li J S, Hu R, et al. Evolution of oxidation in Ni-Cr-W alloy at 1100oC [J]. Rare Met. Mater. Eng., 2010, 39: 1908
doi: 10.1016/S1875-5372(10)60136-1
|
43 |
Greeff A P, Louw C W, Swart H C. The oxidation of industrial FeCrMo steel [J]. Corros. Sci., 2000, 42: 1725
doi: 10.1016/S0010-938X(00)00026-3
|
44 |
Xue R J, Wu Y C. Mechanism of modification of silane coupling agents and properties of modified sericite [J]. J. Chin. Ceram. Soc., 2007, 35: 373
|
|
薛茹君, 吴玉程. 硅烷偶联剂修饰改性的机理及改性绢云母的性能 [J]. 硅酸盐学报, 2007, 35: 373
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|