Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy
XU Wenguo1,2, HAO Wenjiang3, LI Yingju1(), ZHAO Qingbin3, LU Bingyu1,2, GUO Heyi3, LIU Tianyu1,2, FENG Xiaohui1, YANG Yuansheng1()
1Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3China Nuclear Power Engineering Co., Ltd., Beijing 100840, China
Cite this article:
XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy. Acta Metall Sin, 2023, 59(12): 1547-1558.
Inconel 690 alloy is a nickel-based alloy with a high chromium content that provides excellent oxidation and corrosion resistances. The high oxidation resistances of the alloy is attributed to the protective Cr2O3 that forms during oxidation, which prevents the outward diffusion of alloy elements and the inward diffusion of oxygen. However, when the temperature exceeds 1000oC, the volatilization and spallation of the Cr2O3 oxide scale severely reduce the oxidation resistance of the Inconel 690 alloy. The addition of trace active elements is an effective way to improve the oxidation resistance of superalloys; however, the effects of these elements on the oxidation behavior and mechanism of the Inconel 690 alloy remain unclear. In this study, the oxidation behavior of Inconel 690 alloys with varying contents of Al and Ti elements was systematically studied through oxidation kinetics, morphology observation, and element analysis. In addition, the effects of Al, Ti, and their coadditions on the oxidation behavior and mechanism of the Inconel 690 alloy were investigated. The results indicate that the addition of Al reduces the oxidation mass gain and improves the oxidation resistance of the Inconel 690 alloy. Moreover, the addition of Al and Ti accelerates the oxidation rate of the alloy at 850oC, but retards it at 1000 and 1200oC. The positive influence of Al addition can be attributed to the fact that Al2O3 particles precipitated at the grain boundary hinder the diffusion of Cr3+ along the grain boundary. The slow diffusion of Cr3+ inhibits the growth of the Cr2O3 oxide scale and reduces the number of holes in the alloy. As a result, the oxidation resistance of the alloy increases owing to the decrease in the oxidation rate and the increase in adhesion between the oxide scale and the substrate. When Al and Ti are added, Ti4+ , which acts as a high-valence ion, is doped into the Cr2O3 scale, promoting the outward diffusion of Cr3+ and accelerating the oxidation rate of the alloy at lower temperatures (850oC). However, during oxidation, Ti tends to converge toward the surface of the Cr2O3 scale and form a nonvolatile Ti-rich oxide layer. The formation of this layer inhibits the volatilization and peeling of Cr2O3, thereby increasing the oxidation resistance of the Inconel 690 alloy at 1000 and 1200oC.
Table 1 Chemical compositions of 690, 690-Al, and 690-(Al, Ti) alloys
Fig.1 OM (a-c) and SEM (d-f) images of forged 690 (a, d), 690-Al (b, e), and 690-(Al, Ti) (c, f) alloys
Fig.2 Mass gain curves of 690, 690-Al, and 690-(Al, Ti) alloys oxidized at 850oC (a), 1000oC (b), and 1200oC (c) for 100 h
Temperature / oC
Alloy
K' / (g·m-2·h-1)
Oxidation resistance level
850
690
0.011
Complete oxidation resistance
690-Al
0.009
Complete oxidation resistance
690-(Al, Ti)
0.016
Complete oxidation resistance
1000
690
0.103
Oxidation resistance
690-Al
0.053
Complete oxidation resistance
690-(Al, Ti)
0.069
Complete oxidation resistance
1200
690
0.618
Oxidation resistance
690-Al
0.652
Oxidation resistance
690-(Al, Ti)
0.544
Oxidation resistance
Table 2 Oxidation resistance levels of 690, 690-Al, and 690-(Al, Ti) alloys at 850, 1000, and 1200oC
Fig.3 Surface SEM images of oxide scales of 690 (a, d, g), 690-Al (b, e, h), and 690-(Al, Ti) (c, f, i) alloys after oxidation at 850oC (a-c), 1000oC (d-f), and 1200oC (g-i) for 100 h
Fig.4 XRD spectra of 690, 690-Al, and 690-(Al, Ti) alloys oxidized at 850oC (a), 1000oC (b), and 1200oC (c) for 100 h
Fig.5 Cross-sectional SEM images and corresponding EDS elemental maps of oxide scale on 690 (a), 690-Al (b), and 690-(Al, Ti) (c) alloys after oxidation at 850oC for 100 h
Fig.6 Cross-sectional SEM images and corresponding EDS elemental maps of oxide scale on 690 (a), 690-Al (b), 690-(Al, Ti) (c) alloys after oxidation at 1000oC for 100 h
Fig.7 Cross-sectional SEM images and corresponding EDS elemental maps of oxide scale on 690 (a), 690-Al (b), 690-(Al, Ti) (c) alloys after oxidation at 1200oC for 100 h
Fig.8 Cr concentration profiles of 690 (a1-a3), 690-Al (b1-b3), and 690-(Al, Ti) (c1-c3) alloys after oxidation at 850oC (a1-c1), 1000oC (a2-c2), and 1200oC (a3-c3) for 100 h
Fig.9 Schematics of Al and Ti addition to the volatilization and spallation resistance of oxide scale
1
Allen G C, Dyke J M, Harris S J, et al. The oxidation of Inconel-690 alloy at 600 K in air[J]. Appl. Surf. Sci., 1988, 31: 220
doi: 10.1016/0169-4332(88)90063-3
2
Hussain N, Shahid K A, Khan I H, et al. Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air: Ⅱ[J]. Oxid. Met., 1995, 43: 363
doi: 10.1007/BF01047036
3
Park S Y, Lee D B. Oxidation of Inconel 690 alloys at 800-1000oC in air[J]. Appl. Mech. Mater., 2014, 607: 7
doi: 10.4028/www.scientific.net/AMM.607
4
Mechehoud F, Benaioun N E, Hakiki N E, et al. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM)[J]. Appl. Surf. Sci., 2018, 433: 66
doi: 10.1016/j.apsusc.2017.10.094
5
Li X H, Huang F, Wang J Q, et al. Influences of TiN inclusion on corrosion and stress corrosion behaviors of alloy 690 tube in high temperature and high pressure water[J]. Acta Metall. Sin., 2011, 47: 847
Stearns C A, Kohl F J, Fryburg G C. Oxidative vaporization kinetics of Cr2O3 in oxygen from 1000oC to 1300oC[J]. J. Electrochem. Soc., 1974, 121: 945
doi: 10.1149/1.2401958
7
Berthod P. Kinetics of high temperature oxidation and chromia volatilization for a binary Ni-Cr alloy[J]. Oxid. Met., 2005, 64: 235
doi: 10.1007/s11085-005-6562-8
8
Zheng L, Zhang M C, Chellali R, et al. Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy[J]. Appl. Surf. Sci., 2011, 257: 9762
doi: 10.1016/j.apsusc.2011.06.005
9
Wang Z M, Grosseau-Poussard J L, Geandier G, et al. Stress distribution in depth of NiCr + Cr2O3 systems using high-energy synchrotron X-rays in transmission mode[J]. J. Alloys Compd., 2021, 875: 159958
doi: 10.1016/j.jallcom.2021.159958
10
Wongpromrat P, Galerie A, Thublaor T, et al. Evidence for chromium, cobalt and molybdenum volatilisations during high temperature oxidation of Co-27Cr-6Mo Alloy[J]. Corros. Sci., 2022, 202: 110285
doi: 10.1016/j.corsci.2022.110285
11
Tawancy H M. Enhancing the oxidation performance of wrought Ni-base superalloy by minor additions of active elements[J]. J. Mater. Eng. Perform., 2016, 25: 5231
doi: 10.1007/s11665-016-2391-y
12
Li Y P, Tunthawiroon P, Tang N, et al. Effects of Al, Ti, and Zr doping on oxide film formation in Co-29Cr-6Mo alloy used as mould material for Al die-casting[J]. Corros. Sci., 2014, 84: 147
doi: 10.1016/j.corsci.2014.03.020
13
Zeng Y X, Guo X P, Qiao Y Q, et al. Effect of Zr addition on microstructure and oxidation resistance of Nb-Ti-Si base ultrahigh-temperature alloys[J]. Acta Metall. Sin., 2015, 51: 1049
doi: 10.11900/0412.1961.2015.00092
Yang Z, Lu J T, Yang Z, et al. Oxidation behavior of a new wrought Ni-30Fe-20Cr based alloy at 750oC in pure steam and the effects of alloyed yttrium[J]. Corros. Sci., 2017, 125: 106
doi: 10.1016/j.corsci.2017.06.009
15
Liu H, Li Y P, Zhang C L, et al. Effects of aluminum diffusion on the adhesive behavior of the Ni(111)/Cr2O3(0001) interface: First principle study[J]. Comput. Mater. Sci., 2013, 78: 116
doi: 10.1016/j.commatsci.2013.05.037
16
Dong N, Zhang C L, Liu H, et al. Effects of different alloying additives X (X = Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study[J]. Comput. Mater. Sci., 2015, 109: 293
doi: 10.1016/j.commatsci.2015.07.031
17
Vayyala A, Povstugar I, Naumenko D, et al. A nanoscale study of thermally grown chromia on high-Cr ferritic steels and associated oxidation mechanisms[J]. J. Electrochem. Soc., 2020, 167: 061502
18
Teng J W, Gong X J, Yang B B, et al. Influence of Ti addition on oxidation behavior of Ni-Cr-W-based superalloys[J]. Corros. Sci., 2021, 193: 109882
doi: 10.1016/j.corsci.2021.109882
19
Ye X J, Yang B B, Nie Y, et al. Influence of Nb addition on the oxidation behavior of novel Ni-base superalloy[J]. Corros. Sci., 2021, 185: 109436
doi: 10.1016/j.corsci.2021.109436
20
Ding Z Y, Cao B X, Luan J H, et al. Synergistic effects of Al and Ti on the oxidation behaviour and mechanical properties of L12-strengthened FeCoCrNi high-entropy alloys[J]. Corros. Sci., 2021, 184: 109365
doi: 10.1016/j.corsci.2021.109365
21
Teng J W, Gong X J, Yang B B, et al. High temperature oxidation behavior of a novel Ni-Cr-W-Al-Ti superalloy[J]. Corros. Sci., 2022, 198: 110141
doi: 10.1016/j.corsci.2022.110141
22
Li Q, Zhou B X. A study of microstructure of alloy 690[J]. Acta Metall. Sin., 2001, 37: 8
李 强, 周邦新. 690合金的显微组织研究[J]. 金属学报, 2001, 37: 8
23
Li H, Xia S, Zhou B X, et al. Study of carbide precipitation at grain boundary in nickel base alloy 690[J]. Acta Metall. Sin., 2011, 47: 853
Feng H, Song Z G, Zheng W J, et al. Thermodynamic calculation and experimental analysis on equilibrium phases in nickel base alloy Inconel 690[J]. Spec. Steel, 2008, 29: 13
Ren J, Yu L M, Liu C X, et al. Effects of Al addition on high temperature oxidation behavior of 16Cr ODS steel[J]. Corros. Sci., 2022, 195: 110008
doi: 10.1016/j.corsci.2021.110008
26
Nowotny J, Weppner W. Non-Stoichiometric Compounds: Surfaces, Grain Boundaries and Structural Defects[M]. Dordrecht: Kluwer Academic Publishers, 1989: 93
27
Lapington M T, Crudden D J, Reed R C, et al. Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys[J]. Acta Mater., 2021, 206: 116626
doi: 10.1016/j.actamat.2021.116626
28
Moya E G, Moya F, Sami A, et al. Diffusion of chromium in alumina single crystals[J]. Philos. Mag., 1995, 72A: 861
29
Seltzer M S, Wilcox B A. Diffusion of chromium and aluminum in Ni-20Cr and TDNiCr (Ni-20Cr-2ThO2)[J]. Metall. Trans., 1972, 3: 2357
30
Chen T F, Iijima Y, Hirano K I, et al. Diffusion of chromium in nickel-base Ni-Cr-Fe alloys[J]. J. Nucl. Mater., 1989, 169: 285
doi: 10.1016/0022-3115(89)90546-1
31
Chyrkin A, Gunduz K O, Fedorova I, et al. High-temperature oxidation behavior of additively manufactured IN625: Effect of microstructure and grain size[J]. Corros. Sci., 2022, 205: 110382
doi: 10.1016/j.corsci.2022.110382
32
Bataillou L, Desgranges C, Martinelli L, et al. Modelling of the effect of grain boundary diffusion on the oxidation of Ni-Cr alloys at high temperature[J]. Corros. Sci., 2018, 136: 148
doi: 10.1016/j.corsci.2018.03.001
33
Chen T F, Tiwari G P, Iijima Y, et al. Volume and grain boundary diffusion of chromium in Ni-base Ni-Cr-Fe alloys[J]. Mater. Trans., 2003, 44: 40
doi: 10.2320/matertrans.44.40
34
Pilling N, Bedworth R J. The oxidation of metals at high temperatures[J]. Inst. Met., 1923, 29: 529
35
Xu C H, Gao W. Pilling-Bedworth ratio for oxidation of alloys[J]. Mater. Res. Innovations, 2000, 3: 231
doi: 10.1007/s100190050008
36
Zhang Y, Fu H D, Zhou F J, et al. Revealing the effect of Al content on the oxidation of γ'-strengthened cobalt-based superalloys[J]. Corros. Sci., 2022, 198: 110122
doi: 10.1016/j.corsci.2022.110122
37
Bricknell R H, Woodford D A. The mechanism of cavity formation during high temperature oxidation of nickel[J]. Acta Metall., 1982, 30: 257
doi: 10.1016/0001-6160(82)90064-5
38
Kumar A, Nasrallah M, Douglass D L. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys[J]. Oxid. Met., 1974, 8: 227
doi: 10.1007/BF00604042