Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys
SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin(), DING Wenjiang
National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article:
SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys. Acta Metall Sin, 2023, 59(3): 371-386.
This paper briefly reviews the progress on high-temperature oxidation mechanisms of pure Mg and Mg alloys, the thermodynamics and kinetics of high-temperature oxidation of Mg alloys, and the antioxidation mechanism of Mg alloys. The potential of applying advanced characterization techniques in studying the high-temperature oxidation of Mg alloys is envisaged. Finally, the development trends of the oxidation-resistant Mg alloy are also summarized. The main viewpoints are as follows: The protection of magnesium alloys at high temperatures is provided by the formation of a continuous, dense oxide scale that is a specific thickness and prevents the outward diffusion of magnesium vapor and the inward diffusion of oxygen; the oxidation resistance of Mg alloys is usually closely related to the thermal stability of the second phases; when the trace alloy elements are not enough to form the corresponding surface oxide scale, the oxidation resistance can be improved by creating a substitutional solid solution and using the reactive element effect; the size of the oxide grain size decreases and then enhances the oxidation resistance once the surface active elements is enriched on the surface of the alloys; the selective oxidation and synergistic effect of alloying elements are critical to the oxidation resistance of Mg alloys; the addition of nano or microparticles into the Mg alloys improve the high-temperature oxidation resistance of the Mg alloy by reducing the size of specific oxidation sensitive regions. In the future, the research on the high-temperature oxidation of Mg alloys can be based on the following aspects: Investigating the processes and nature of the oxidation resistance of Mg alloys using cutting-edge characterization techniques; constructing the underlying connections between the alloying elements and the oxide scale grain size and mechanical properties; designing and optimizing multi-alloying element composition systems.
Fig.1 Relationships between Gibbs free energy change (ΔG)for the reactions (3)-(5) of Mg-Er alloy and atomic fraction of Er at 500oC[31]
Fig.2 Schematics of a multilayer oxide film structure formed by a Mg-8.1%Er alloy in 500oC of air[31] (a) the first stage of oxidation (b) the second stage of oxidation (c) the third stage of oxidation (d) the fourth stage of oxidation
Fig.3 SEM images of oxide film section of Mg97Y2Zn1 (a) and Mg96.9Y2Zn1Yb0.1 (e) alloys at 973 K oxidation; and EDS analyses of O (b, f), Mg (c, g), Y (d, h), and Yb (i), respectively[46]
Fig.4 TEM bright field image of oxide film of Mg-Gd alloy at 740oC (a); HRTEM images of cubic phase (b), Gd2O3 (c), MgO (d), and matrix (e), respectively[69] (d—interplanar spacing)
Fig.5 Cross-sectional TEM bright field images (a, e), HRTEM images (b, f), SAED patterns (c, g), and EDS analyses (d, h) of the oxide layers after 2 h oxidation at 400oC in air formed on AZ91 (a-d) and AZ91-0.006%Be (e-h)[36] ((hkl)—crystal face index. Insets in Figs.5d and h show the enlarged views)
Fig.6 Morphology and chemical composition distributions around the internal oxide layer-matrix interface of Fe-9Cr ferritic-martensitic (F-M) steel after exposure to 600oC steam for 100 h[88] (HAADF—high-angle annular dark-field, EELS—electron energy loss spectroscopy) (a) HAADF image showing the morphology around the internal oxide layer-matrix interface (b) qualitative EELS chemical composition mapping showing the distribution of O, Cr, and Fe (c, d) qualitative (c) and quantitative (d) EELS line profiles showing the distribution of O, Cr, and Fe
Fig.7 Cross-sectional oxide film of Fe-17Cr-9Ni stainless steel after exposure to 600oC steam for 1500 h [89] (a) HAADF image of oxide layer (b) atomic resolution HAADF image oxide layer and FFT image of oxide layer (c) atomic resolution HAADF image showing the semi-coherent interface between the oxide phase and the metal phase
Fig.8 Atom probe tomography (APT) analyses of cross-sectional oxide film of Fe-9Cr F-M steel after exposure to 600oC steam for 100 h[88] (a) APT data set showing the 3D chemical composition distribution in the chromite precipitates and surrounding metal in the internal oxide laye (b) concentration profiles across the chromite-metal interface
Fig.9 SEM-EBSD images of the cross-sectional oxide film on T91 steel exposure to steam at 600oC for 1500 h[90] (a) SEM image (b) mode quality image (c-e) inverse pole figures (IPFs) of the surface oxide (IPFs of the x, y, and z axes are called IPFX, IPFY, and IPFZ, respectively, which can display the three-dimensional orientation information of the sample; different colors in the IPFs represent different crystallographic orientations)
Fig.10 TKD analysis results of the matrix-internal oxide layer interface of the cross-sectional oxide film on T91 steel exposure to supercritical water (SCW ) at 600oC for 1500 h (a) SEM image[90] (b) pattern mass diagram[90] (c) phase diagram[90] (d-f) IPFs[90] (g) pole plot of the three selected oxides with the metal matrix around them[88]
1
Davy H. Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia [J]. Philos. Trans. R. Soc. Lond., 1808, 98: 313
2
Yang Y, Xiong X M, Chen J, et al. Research advances in magnesium and magnesium alloys worldwide in 2020 [J]. J. Magnes. Alloy., 2021, 9: 705
doi: 10.1016/j.jma.2021.04.001
3
Ding W J. Science and Technology of Magnesium Alloy [M]. Beijing: Science Press, 2007: 1
丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007: 1
4
Jeon J, Lee S, Kim B, et al. Effect of Sb and Sr addition on corrosion properties of Mg-5Al-2Si alloy [J]. J. Korean Inst. Met. Mater., 2008, 46: 304
5
Jun J H, Kim J M, Park B K, et al. Effects of rare earth elements on microstructure and high temperature mechanical properties of ZC63 alloy [J]. J. Mater. Sci., 2005, 40: 2659
doi: 10.1007/s10853-005-2099-0
6
Shin B, Kim Y, Bae D. Deformation behavior of a wrought Mg-Zn-RE alloy at the elevated temperatures [J]. J. Korean Inst. Met. Mater., 2008, 46: 1
7
Toda-Caraballo I, Galindo-Nava E I, Rivera-Díaz-del-Castillo P E J. Understanding the factors influencing yield strength on Mg alloys [J]. Acta Mater., 2014, 75: 287
doi: 10.1016/j.actamat.2014.04.064
8
Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
doi: 10.1038/nmat4435
pmid: 26480229
9
Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
10
Abaspour S, Cáceres C H. Thermodynamics-based selection and design of creep-resistant cast Mg alloys [J]. Metall. Mater. Trans., 2015, 46A: 5972
11
Mondal A K, Fechner D, Kumar S, et al. Interrupted creep behaviour of Mg alloys developed for powertrain applications [J]. Mater. Sci. Eng., 2010, A527: 2289
12
Kondori B, Mahmudi R. Impression creep characteristics of a cast Mg alloy [J]. Metall. Mater. Trans., 2009, 40A: 2007
13
Jin J, Li H, Li X H. Friction and wear behavior of micro arc oxidation coatings on magnesium alloy at high temperature [J]. Rare Met. Mater. Eng., 2017, 45: 1202
14
Ming Y, You G Q, Yao F J, et al. Research progress on oxidation and oxidation mechanism of magnesium [J]. Mater. Rev., 2021, 35: 19134
Czerwinski F. Oxidation characteristics of magnesium alloys [J]. JOM, 2012, 64: 1477
doi: 10.1007/s11837-012-0477-z
17
Czerwinski F. The reactive element effect on high-temperature oxidation of magnesium [J]. Int. Mater. Rev., 2015, 60: 264
doi: 10.1179/1743280415Y.0000000001
18
Pilling N B, Bedworth R E. The oxidation of metals at high temperatures [J]. J. Inst. Met., 1923, 29: 529
19
Gulbransen E A. The oxidation and evaporation of magnesium at temperatures from 400oC to 500oC [J]. J. Electrochem. Soc., 1945, 87: 589
20
Czerwinski F, Kedzierski Z. On the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits [J]. J. Mater. Sci., 1997, 32: 2957
doi: 10.1023/A:1018693005002
21
Jeurgens L P H, Vinodh M S, Mittemeijer E J. Initial oxide-film growth on Mg-based MgAl alloys at room temperature [J]. Acta Mater., 2008, 56: 4621
doi: 10.1016/j.actamat.2008.05.020
22
Hakiki N E. Comparative study of structural and semiconducting properties of passive films and thermally grown oxides on AISI 304 stainless steel [J]. Corros. Sci., 2011, 53: 2688
doi: 10.1016/j.corsci.2011.05.012
23
Smeltzer W W. The influence of short-circuit grain boundary diffusion on the growth of oxide layers on metals [J]. Mater. Sci. Forum, 1988, 29: 151
doi: 10.4028/www.scientific.net/MSF.29.151
24
Lea C, Molinari C. Magnesium diffusion, surface segregation and oxidation in Al-Mg alloys [J]. J. Mater. Sci., 1984, 19: 2336
doi: 10.1007/BF01058110
25
Krger F A. Physical chemistry of crystals [J]. Chem. Eng. News, 1965, 43: 88
26
Smeltzer W W. Oxidation of an aluminum-3 per cent magnesium alloy in the temperature range 200-550oC [J]. J. Electrochem. Soc., 1958, 105: 67
doi: 10.1149/1.2428764
27
Finch G I, Quarrbell A G. The structure of magnesium, zinc and aluminium films [J]. Proc. Roy. Soc., 1933, 141A: 398
28
Song X, Wang Z W, Zeng R C. Magnesium alloys: Composition, microstructure and ignition resistance [J]. Chin. J. Nonferrous Met., 2021, 31: 598
Wang X M, Zeng X Q, Zhou Y, et al. Early oxidation behaviors of Mg-Y alloys at high temperatures [J]. J. Alloys Compd., 2008, 460: 368
doi: 10.1016/j.jallcom.2007.06.065
30
Yu X W, Jiang B, He J J, et al. Effect of Zn addition on the oxidation property of Mg-Y alloy at high temperatures [J]. J. Alloys Compd., 2016, 687: 252
doi: 10.1016/j.jallcom.2016.06.128
31
Wu J J, Yuan Y, Yang L, et al. The oxidation behavior of Mg-Er binary alloys at 500oC [J]. Corros. Sci., 2022, 195: 109961
doi: 10.1016/j.corsci.2021.109961
32
Aydin D S, Bayindir Z, Pekguleryuz M O. The effect of strontium (Sr) on the ignition temperature of magnesium (Mg): A look at the pre-ignition stage of Mg-6 wt% Sr [J]. J. Mater. Sci., 2013, 48: 8117
doi: 10.1007/s10853-013-7624-y
33
Lee D B. High temperature oxidation of AZ31 + 0.3 wt.%Ca and AZ31 + 0.3 wt.%CaO magnesium alloys [J]. Corros. Sci., 2013, 70: 243
doi: 10.1016/j.corsci.2013.01.036
34
Ming Y, You G Q, Yao F J, et al. High-temperature oxidation of Mg-Ca alloy: Experimentation and density functional theory [J]. Corros. Sci., 2022, 196: 110046
doi: 10.1016/j.corsci.2021.110046
35
Czerwinski F. The early stage oxidation and evaporation of Mg-9%Al-1%Zn alloy [J]. Corros. Sci., 2004, 46: 377
doi: 10.1016/S0010-938X(03)00151-3
36
Tan Q Y, Mo N, Lin C L, et al. Improved oxidation resistance of Mg-9Al-1Zn alloy microalloyed with 60 wt ppm Be attributed to the formation of a more protective (Mg, Be)O surface oxide [J]. Corros. Sci., 2018, 132: 272
doi: 10.1016/j.corsci.2018.01.006
37
Tan Q Y, Atrens A, Mo N, et al. Oxidation of magnesium alloys at elevated temperatures in air: A review [J]. Corros. Sci., 2016, 112: 734
doi: 10.1016/j.corsci.2016.06.018
38
Tan Q Y, Mo N, Jiang B, et al. Combined influence of Be and Ca on improving the high-temperature oxidation resistance of the magnesium alloy Mg-9Al-1Zn [J]. Corros. Sci., 2017, 122: 1
doi: 10.1016/j.corsci.2017.03.023
39
Wang X M, Zeng X Q, Wu G S, et al. Surface oxidation behavior of MgNd alloys [J]. Appl. Surf. Sci., 2007, 253: 9017
doi: 10.1016/j.apsusc.2007.05.023
40
Guan M, Hao W X, Fan J F. High temperature oxidation behavior of ignition-proof Mg-Y-Ce alloys [J]. Rare Met. Mater. Eng., 2010, 39: 1375
Yu X W, Shen S J, Jiang B, et al. The effect of the existing state of Y on high temperature oxidation properties of magnesium alloys [J]. Appl. Surf. Sci., 2016, 370: 357
doi: 10.1016/j.apsusc.2016.02.156
42
Tan Q Y, Mo N, Lin C L, et al. Generalisation of the oxide reinforcement model for the high oxidation resistance of some Mg alloys micro-alloyed with Be [J]. Corros. Sci., 2019, 147: 357
doi: 10.1016/j.corsci.2018.12.001
43
Tan Q Y, Yin Y, Mo N, et al. Recent understanding of the oxidation and burning of magnesium alloys [J]. Surf. Innov., 2019, 7: 71
doi: 10.1680/jsuin.18.00062
44
Cheng C L, Li X Q, Le Q C, et al. Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy [J]. J. Magnes. Alloy., 2020, 8: 1281
doi: 10.1016/j.jma.2019.09.013
45
Barrena M I, de Salazar J M G, Matesanz L, et al. Effect of heat treatments on oxidation kinetics in AZ91 and AM60 magnesium alloys [J]. Mater. Charact., 2011, 62: 982
doi: 10.1016/j.matchar.2011.07.001
46
Inoue S I, Yamasaki M, Kawamura Y. Classification of high-temperature oxidation behavior of Mg-1 at% X binary alloys and application of proposed taxonomy to nonflammable multicomponent Mg alloys [J]. Corros. Sci., 2020, 174: 108858
doi: 10.1016/j.corsci.2020.108858
47
Feng Z X, Shi Q N, Wang X Q, et al. Effect of Sr and Ca compound alloying on oxidation weight gain of the AZ31 magnesium alloy [J]. J. Funct. Mater., 2016, 47: 8124
Yuan C M, Huang D Z, Li C, et al. Ignition behavior of magnesium powder layers on a plate heated at constant temperature [J]. J. Hazard. Mater., 2013, 246-247: 283
doi: 10.1016/j.jhazmat.2012.12.038
pmid: 23314397
49
Südholz A D, Birbilis N, Bettles C J, et al. Corrosion behaviour of Mg-alloy AZ91E with atypical alloying additions [J]. J. Alloys Compd., 2007, 471: 109
doi: 10.1016/j.jallcom.2008.03.128
50
Stumphy B, Mudryk Y, Russell A, et al. Oxidation resistance of B2 rare earth-magnesium intermetallic compounds [J]. J. Alloys Compd., 2008, 460: 363
doi: 10.1016/j.jallcom.2007.06.067
51
Emuna M, Greenberg Y, Hevroni R, et al. Phase diagrams of binary alloys under pressure [J]. J. Alloys Compd., 2016, 687: 360
doi: 10.1016/j.jallcom.2016.06.158
52
Arrabal R, Pardo A, Merino M C, et al. Oxidation behavior of AZ91D magnesium alloy containing Nd or Gd [J]. Oxid. Met., 2011, 76: 433
doi: 10.1007/s11085-011-9265-3
53
Zhang M X, Kelly P M. Surface alloying of AZ91D alloy by diffusion coating [J]. J. Mater. Res., 2002, 17: 2477
doi: 10.1557/JMR.2002.0360
54
Shih T S, Liu J B, Wei P S. Oxide films on magnesium and magnesium alloys [J]. Mater. Chem. Phys., 2007, 104: 497
doi: 10.1016/j.matchemphys.2007.04.010
55
Pan N, Wei Y H, Hou L F, et al. Oxidation process of AZ61 magnesium alloy at high temperature [J]. Trans. Mater. Heat Treat., 2013, 34(3): 67
Youdelis W V, Yang C S. Beryllium-enhanced grain refinement of aluminium-titanium alloys [J]. Met. Sci., 1982, 16: 275
59
Silversmith D J, Averbach B L. Pressure dependence of the elastic constants of beryllium and beryllium-copper alloys [J]. Phys. Rev., 1970, 1B: 567
60
Zhao H J, Zhang Y H, Kang Y L, et al. Oxidization thermo-dynamics of ignition-proof element and oxides properties in magnesium alloy [J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 340
Balch O K, O'Dwyer J G, Davis G R, et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions [J]. Mater. Sci. Eng., 2005, A391: 408
62
Foerster G. HiLoN: A new approach to magnesium die casting [J]. Adv. Mater. Process., 1998, 154: 79
63
Wikle K G. Improving aluminum castings with beryllium [J]. AFS Trans., 1978, 6: 119
64
Pint B A. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
doi: 10.1007/BF01046818
65
Kiejna A. Comment on the surface segregation in alkali-metal alloys [J]. J. Phys. Condens. Matter., 1990, 2: 6331
doi: 10.1088/0953-8984/2/29/012
66
Aydin D S, Bayindir Z, Pekguleryuz M O. High temperature oxidation behavior of hypoeutectic Mg-Sr binary alloys: The Role of the two-phase microstructure and the surface activity of Sr [J]. Adv. Eng. Mater., 2015, 17: 697
doi: 10.1002/adem.201400191
67
Luo L L, Kang Y H, Yang J C, et al. Nucleation and growth of oxide islands during the initial-stage oxidation of (100)Cu-Pt alloys [J]. J. Appl. Phys., 2015, 117: 065305
68
Diawara B, Beh Y A, Marcus P. Nucleation and growth of oxide layers on stainless steels (FeCr) using a virtual oxide layer model [J]. J. Phys. Chem., 2010, 114C: 19299
69
Cai Y, Yan H, Zhu M Y, et al. High-temperature oxidation behavior and corrosion behavior of high strength Mg-xGd alloys with high Gd content [J]. Corros. Sci., 2021, 193: 109872
doi: 10.1016/j.corsci.2021.109872
70
Rokhlin L L. Magnesium Alloys Containing Rare Earth Metals [M]. London: CRC Press, 2003: 10
71
Cox E G. Structural inorganic chemistry [J]. Nature, 1946, 157: 386
doi: 10.1038/157386a0
72
Huang Y B, Chung I S, You B S, et al. Effect of Be addition on the oxidation behavior of Mg-Ca alloys at elevated temperature [J]. Met. Mater. Int., 2004, 10: 7
doi: 10.1007/BF03027357
73
Van Orman J A, Crispin K L. Diffusion in oxides [J]. Rev. Mineral. Geochem., 2010, 72: 757
doi: 10.2138/rmg.2010.72.17
74
Zeng X Q, Wang Q D, Lü Y Z, et al. Behavior of surface oxidation on molten Mg-9Al-0.5Zn-0.3Be alloy [J]. Mater. Sci. Eng., 2001, A301: 154
75
Zeng X Q, Wang Q D, Lü Y Z, et al. Study on ignition proof magnesium alloy with beryllium and rare earth additions [J]. Scr. Mater., 2000, 43: 403
doi: 10.1016/S1359-6462(00)00440-1
76
Tan Q Y, Mo N, Jiang B, et al. Oxidation resistance of Mg-9Al-1Zn alloys micro-alloyed with Be [J]. Scr. Mater., 2016, 115: 38
doi: 10.1016/j.scriptamat.2015.12.022
77
Cao P, Qian M, Stjohn D H. Grain coarsening of magnesium alloys by beryllium [J]. Scr. Mater., 2004, 51: 647
doi: 10.1016/j.scriptamat.2004.06.022
78
Cao P, Qian M, Stjohn D H. Mechanism for grain refinement of magnesium alloys by superheating [J]. Scr. Mater., 2007, 56: 633
doi: 10.1016/j.scriptamat.2006.12.009
79
Fan J F, Yang G C, Zhou Y H, et al. Selective oxidation and the third-element effect on the oxidation of Mg-Y alloys at high temperatures [J]. Metall. Mater. Trans., 2009, 40A: 2184
80
Adachi G Y, Imanaka N. The binary rare earth oxides [J]. Chem. Rev., 1998, 98: 1479
doi: 10.1021/cr940055h
81
Li M S. Corrosion of Metals at High Temperature [M]. Beijing: Metallurgical Industry Press, 2001: 187
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 187
82
Nguyen Q B, Gupta M, Srivatsan T S. On the role of nano-alumina particulate reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2009, A500: 233
83
Shao Y H, Wang J L, Zhang W, et al. High temperature oxidation behavior of a heat resistant magnesium alloy Mg-14Gd-2.3Zn-Zr [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 73
Nguyen T D, Lee D B. Oxidation of AM60B Mg alloys containing dispersed SiC particles in air at temperatures between 400 and 550oC [J]. Oxid. Met., 2010, 73: 183
doi: 10.1007/s11085-009-9174-x
85
Wang X J, Hu X S, Wu K, et al. Hot deformation behavior of SiCp/AZ91 magnesium matrix composite fabricated by stir casting [J]. Mater. Sci. Eng., 2008, A492: 481
86
Li J Q, Wang L, Cheng H W, et al. Synthesis and compressive deformation of rapidly solidified magnesium alloy and composites reinforced by SiCp [J]. Mater. Sci. Eng., 2008, A474: 24
87
Yang W, Weatherly G C, McComb D W, et al. The structure of SiC-reinforced Mg casting alloys [J]. J. Microsc., 1997, 185: 292
doi: 10.1046/j.1365-2818.1997.1530711.x
88
Shen Z, Chen K, Yu H B, et al. New insights into the oxidation mechanisms of a ferritic-martensitic steel in high-temperature steam [J]. Acta Mater., 2020, 194: 522
doi: 10.1016/j.actamat.2020.05.052
89
Shen Z, Tweddle D, Yu H B, et al. Microstructural understanding of the oxidation of an austenitic stainless steel in high-temperature steam through advanced characterization [J]. Acta Mater., 2020, 194: 321
doi: 10.1016/j.actamat.2020.05.010
90
Chen K, Zhang L F, Shen Z. Understanding the surface oxide evolution of T91 ferritic-martensitic steel in supercritical water through advanced characterization [J]. Acta Mater., 2020, 194: 156
doi: 10.1016/j.actamat.2020.05.016