Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (3): 424-434    DOI: 10.11900/0412.1961.2022.00241
Research paper Current Issue | Archive | Adv Search |
Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures
WANG Di1,2, HE Lili3, WANG Dong2(), WANG Li2, ZHANG Siqian1, DONG Jiasheng2, CHEN Lijia1, ZHANG Jian2
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 AECC Southern Industrial Limited Company, Zhuzhou 412000, China
Cite this article: 

WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures. Acta Metall Sin, 2023, 59(3): 424-434.

Download:  HTML  PDF(4577KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Pt-Al coating is a vital section of aero-engine power blades that can improve the operating temperature of the blade. The blade is subjected to axial tensile stress during operation. Both the oxidation of the Pt-Al coating and the microstructure evolution caused by the element diffusion between the coating and the matrix at high temperatures affect the service performance of the blade. However, the specific mechanisms remain unclear. In this work the effect of Pt-Al coating on the tensile properties of a DD413 alloy was studied. SEM and TEM were used to compare the tensile properties of the uncoated and Pt-Al-coated samples, respectively, at 760 and 980oC. Lower yield strength was detected in Pt-Al-coated samples than that in uncoated samples at 760 and 980oC. The different crack initiation modes and deformation mechanisms of Pt-Al coating at 760 and 980oC mainly result from the ductile to brittle transition temperature (DBTT). At high temperatures, the transition from β to γ′ is conducive to the dislocation slip, which leads to the plastic deformation of the Pt-Al coating. The increase in the tensile strength of the Pt-Al layer above DBTT can be attributed to the solidified solution-strengthening effect of Pt in β-NiAl.

Key words:  Pt-Al coating      single crystal superalloy      tensile property      ductile to brittle transition temperature     
Received:  12 May 2022     
ZTFLH:  TG141  
Fund: National Science and Technology Major Project of China(P2021-A-IV-001-002);National Science and Technology Major Project of China(2017-Ⅵ-0019-0091);National Science and Technology Major Project of China(J2019-Ⅵ-0010-0124);National Natural Science Foundation of China(51771204)
About author:  WANG Dong, professor, Tel: (024)23748876, E-mail: dwang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00241     OR     https://www.ams.org.cn/EN/Y2023/V59/I3/424

Fig.1  Schematic of tensile sample (Ra—surface roughness. unit: mm)
Fig.2  SEM images of initial surface (a) and cross-section (b) of Pt-Al coating (Inset shows grain morphology in the coating. OL—outer layer, IL—inner layer, IDZ—inter diffusion zone)
Fig.3  Nominal stress (σ)-strain (ε) curves of uncoated and Pt-Al coating samples at 760 and 980oC
Temperature / oCSampleYield strength / MPaUltimate tensile strength / MPaElongation / %
760Uncoated1075 ± 711282 ± 168.0 ± 0.6
Pt-Al coating960 ± 311262 ± 3011.8 ± 5.0
980Uncoated433 ± 6651 ± 420.0 ± 1.0
Pt-Al coating397 ± 26633 ± 1518.5 ± 4.9
Table 1  Tensile properties of uncoated and Pt-Al coating samples at 760 and 980oC
Fig.4  SEM images of tensile fracture surface of uncoated (a, c) and Pt-Al coating (b, d) samples at 760oC (a, b) and 980oC (c, d), respectively (Insets show the high magnified images of the fracture)
Fig.5  SEM images of tensile fracture coating region of Pt-Al coating samples at 760oC (a) and 980oC (b)
Fig.6  Secondary electron (SE) images of uncoated samples (a, c) and BSE images of Pt-Al coating samples (b, d) logitudinal-sections tensile fractured along [001] orientation at 760oC (a, b) and 980oC (c, d), respectively (Insets show the microstructure of fracture cross-section)
Fig.7  BSE images of tensile fracture cross-sectional morphology of Pt-Al coating samples after etched at 760oC (a) and 980oC (b)
MicrostructureInitialAfter 760oC tensile testAfter 980oC tensile test
Oxide layer-5.8 ± 0.73.4 ± 0.6
OL19.7 ± 0.77.0 ± 0.58.2 ± 0.2
IL22.4 ± 1.17.8 ± 0.49.5 ± 0.8
Table 2  Thicknesses of cross-sectional structure of Pt-Al coating sample initial and after tensile test
Fig.8  SEM images of tensile tested uncoated (a, c) and Pt-Al coating (b, d) samples at 760oC (a, b) and 980oC (c, d), respectively (Inset shows the γ′ deformation morphology)
Fig.9  TEM images of dislocation configuration of tensile deformed structure of uncoated (a, c) and Pt-Al coating (b, d) samples at 760oC (a, b ) and 980oC (c, d), respectively
1 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
2 Wang D, Wang D, Xie G, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-based single-crystal superalloy [J]. Acta Metall. Sin., 2021, 57: 780
doi: 10.11900/0412.1961.2020.00246
王 迪, 王 栋, 谢 光 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响 [J]. 金属学报, 2021, 57: 780
3 Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
4 Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
doi: 10.1016/j.corsci.2018.02.006
5 Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
6 Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
7 Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
doi: 10.1016/j.corsci.2019.108115
8 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
doi: 10.1016/j.corsci.2016.05.011
9 Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
doi: 10.1016/j.corsci.2016.01.024
10 Krishna G R, Das D K, Singh V, et al. Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process [J]. Mater. Sci. Eng., 1998, A251: 40
11 Lowrie R, Boone D H. Composite coatings of CoCrAlY plus platinum [J]. Thin Solid Films, 1977, 45: 491
doi: 10.1016/0040-6090(77)90236-X
12 Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
doi: 10.1016/S1359-6454(00)00156-7
13 Haynes J A, Pint B A, More K L, et al. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings [J]. Oxid. Met., 2002, 58: 513
doi: 10.1023/A:1020525123056
14 Qin F, Anderegg J W, Jenks C J, et al. The effect of Pt on Ni3Al surface oxidation at low-pressures [J]. Surf. Sci., 2007, 601: 146
doi: 10.1016/j.susc.2006.09.014
15 Alam M Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
16 Alam M Z, Kamat S V, Jayaram V, et al. Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading [J]. Acta Mater., 2014, 67: 278
doi: 10.1016/j.actamat.2013.12.033
17 Vogel D, Newman L, Deb P, et al. Ductile-to-brittle transition temperature behavior of platinum-modified coatings [J]. Mater. Sci. Eng., 1987, 88: 227
doi: 10.1016/0025-5416(87)90089-9
18 Alam M Z, Srivathsa B, Kamat S V, et al. Study of brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method [J]. Trans. Indian Inst. Met., 2011, 64: 57
doi: 10.1007/s12666-011-0011-y
19 Dryepondt S, Pint B A. Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens [J]. Surf. Coat. Technol., 2010, 205: 1195
doi: 10.1016/j.surfcoat.2010.08.081
20 Noebe R D, Cullers C L, Bowman R R. The effect of strain rate and temperature on the tensile properties of NiAl [J]. J. Mater. Res., 1992, 7: 605
doi: 10.1557/JMR.1992.0605
21 Eskner M, Sandström R. Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique [J]. Surf. Coat. Technol., 2003, 165: 71
doi: 10.1016/S0257-8972(02)00702-8
22 Alam M Z, Chatterjee D, Muraleedharan K, et al. Effect of strain rate on ductile-to-brittle transition temperature of a free-standing Pt-aluminide bond coat [J]. Metall. Mater Trans., 2011, 42A: 1431
23 Alam M Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
24 Texier D, Monceau D, Selezneff S, et al. High temperature micromechanical behavior of a Pt-modified nickel aluminide bond-coating and of its interdiffusion zone with the superalloy substrate [J]. Metall. Mater. Trans., 2020, 51A: 1475
25 Reppich B. Some new aspects concerning particle hardening mechanisms in γ′ precipitating Ni-base alloys—I. Theoretical concept [J]. Acta Metall., 1982, 30: 87
doi: 10.1016/0001-6160(82)90048-7
26 Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 151
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 151
27 Feng D. The Physics of Metals Mechanical Properties of Metals [M]. Vol. 3, Beijing: Science Press, 1999: 495
冯 端. 金属物理学(第三卷 金属力学性质) [M]. 北京: 科学出版社, 1999: 495
28 Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
doi: 10.1080/14786437408213555
29 Groves G W, Kelly A. Change of shape due to dislocation climb [J]. Philos. Mag., 1969, 19: 977
doi: 10.1080/14786436908225862
30 Noebe R D, Bowman R R, Nathal M V. Physical and mechanical properties of the B2 compound NiAl [J]. Int. Mater. Rev., 1993, 38: 193
doi: 10.1179/imr.1993.38.4.193
31 Rickman J M, LeSar R, Srolovitz D J. Solute effects on dislocation glide in metals [J]. Acta Mater., 2003, 51: 1199
doi: 10.1016/S1359-6454(02)00304-X
32 Su Y, Tian S G, Yu H C, et al. Deformation mechanisms of Ni-based single crystal superalloys during steady-state creep at intermediate temperatures [J]. Acta Metall. Sin., 2015, 51: 1472
doi: 10.11900/0412.1961.2015.00158
苏 勇, 田素贵, 于慧臣 等. 镍基单晶高温合金中温稳态蠕变期间的变形机制 [J]. 金属学报, 2015, 51: 1472
33 Sakata T, Yasuda H Y, Umakoshi Y. Interphase boundary fracture and grain boundary precipitation of Ni3Al(γ′) phase in β-NiAl bicrystals [J]. Acta Mater., 2003, 51: 1561
doi: 10.1016/S1359-6454(02)00558-X
34 Jiang C, Sordelet D J, Gleeson B. Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study [J]. Acta Mater., 2006, 54: 2361
doi: 10.1016/j.actamat.2006.01.010
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[5] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[8] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[9] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[10] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[11] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[12] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[13] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[14] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[15] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
No Suggested Reading articles found!