|
|
Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures |
WANG Di1,2, HE Lili3, WANG Dong2( ), WANG Li2, ZHANG Siqian1, DONG Jiasheng2, CHEN Lijia1, ZHANG Jian2 |
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 AECC Southern Industrial Limited Company, Zhuzhou 412000, China |
|
Cite this article:
WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures. Acta Metall Sin, 2023, 59(3): 424-434.
|
Abstract The Pt-Al coating is a vital section of aero-engine power blades that can improve the operating temperature of the blade. The blade is subjected to axial tensile stress during operation. Both the oxidation of the Pt-Al coating and the microstructure evolution caused by the element diffusion between the coating and the matrix at high temperatures affect the service performance of the blade. However, the specific mechanisms remain unclear. In this work the effect of Pt-Al coating on the tensile properties of a DD413 alloy was studied. SEM and TEM were used to compare the tensile properties of the uncoated and Pt-Al-coated samples, respectively, at 760 and 980oC. Lower yield strength was detected in Pt-Al-coated samples than that in uncoated samples at 760 and 980oC. The different crack initiation modes and deformation mechanisms of Pt-Al coating at 760 and 980oC mainly result from the ductile to brittle transition temperature (DBTT). At high temperatures, the transition from β to γ′ is conducive to the dislocation slip, which leads to the plastic deformation of the Pt-Al coating. The increase in the tensile strength of the Pt-Al layer above DBTT can be attributed to the solidified solution-strengthening effect of Pt in β-NiAl.
|
Received: 12 May 2022
|
|
Fund: National Science and Technology Major Project of China(P2021-A-IV-001-002);National Science and Technology Major Project of China(2017-Ⅵ-0019-0091);National Science and Technology Major Project of China(J2019-Ⅵ-0010-0124);National Natural Science Foundation of China(51771204) |
About author: WANG Dong, professor, Tel: (024)23748876, E-mail: dwang@imr.ac.cn
|
1 |
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
doi: 10.1016/j.pmatsci.2012.08.002
|
2 |
Wang D, Wang D, Xie G, et al. Influence of Pt-Al coating on hot corrosion resistance behaviors of a Ni-based single-crystal superalloy [J]. Acta Metall. Sin., 2021, 57: 780
doi: 10.11900/0412.1961.2020.00246
|
|
王 迪, 王 栋, 谢 光 等. Pt-Al涂层对一种镍基单晶高温合金抗热腐蚀行为的影响 [J]. 金属学报, 2021, 57: 780
|
3 |
Yang Y F, Liu Z L, Ren P, et al. Hot corrosion behavior of Pt + Hf co-modified NiAl coating in the mixed salt of Na2SO4-NaCl at 900oC [J]. Corros. Sci., 2020, 167: 108527
doi: 10.1016/j.corsci.2020.108527
|
4 |
Jiang C Y, Yang Y F, Zhang Z Y, et al. A Zr-doped single-phase Pt-modified aluminide coating and the enhanced hot corrosion resistance [J]. Corros. Sci., 2018, 133: 406
doi: 10.1016/j.corsci.2018.02.006
|
5 |
Yang Y F, Jiang C Y, Zhang Z Y, et al. Hot corrosion behaviour of single-phase platinum-modified aluminide coatings: Effect of Pt content and pre-oxidation [J]. Corros. Sci., 2017, 127: 82
doi: 10.1016/j.corsci.2017.08.015
|
6 |
Yang Y F, Jiang C Y, Yao H R, et al. Preparation and enhanced oxidation performance of a Hf-doped single-phase Pt-modified aluminide coating [J]. Corros. Sci., 2016, 113: 17
doi: 10.1016/j.corsci.2016.09.014
|
7 |
Yu C T, Liu H, Ullah A, et al. High-temperature performance of (Ni, Pt)Al coatings on second-generation Ni-base single-crystal superalloy at 1100oC: Effect of excess S impurities [J]. Corros. Sci., 2019, 159: 108115
doi: 10.1016/j.corsci.2019.108115
|
8 |
Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
doi: 10.1016/j.corsci.2016.05.011
|
9 |
Yang Y F, Jiang C Y, Bao Z B, et al. Effect of aluminisation characteristics on the microstructure of single phase β-(Ni, Pt)Al coating and the isothermal oxidation behaviour [J]. Corros. Sci., 2016, 106: 43
doi: 10.1016/j.corsci.2016.01.024
|
10 |
Krishna G R, Das D K, Singh V, et al. Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process [J]. Mater. Sci. Eng., 1998, A251: 40
|
11 |
Lowrie R, Boone D H. Composite coatings of CoCrAlY plus platinum [J]. Thin Solid Films, 1977, 45: 491
doi: 10.1016/0040-6090(77)90236-X
|
12 |
Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
doi: 10.1016/S1359-6454(00)00156-7
|
13 |
Haynes J A, Pint B A, More K L, et al. Influence of sulfur, platinum, and hafnium on the oxidation behavior of CVD NiAl bond coatings [J]. Oxid. Met., 2002, 58: 513
doi: 10.1023/A:1020525123056
|
14 |
Qin F, Anderegg J W, Jenks C J, et al. The effect of Pt on Ni3Al surface oxidation at low-pressures [J]. Surf. Sci., 2007, 601: 146
doi: 10.1016/j.susc.2006.09.014
|
15 |
Alam M Z, Hazari N, Varma V K, et al. Effect of cyclic oxidation exposure on tensile properties of a Pt-aluminide bond-coated Ni-base superalloy [J]. Metall. Mater. Trans., 2011, 42A: 4064
|
16 |
Alam M Z, Kamat S V, Jayaram V, et al. Micromechanisms of fracture and strengthening in free-standing Pt-aluminide bond coats under tensile loading [J]. Acta Mater., 2014, 67: 278
doi: 10.1016/j.actamat.2013.12.033
|
17 |
Vogel D, Newman L, Deb P, et al. Ductile-to-brittle transition temperature behavior of platinum-modified coatings [J]. Mater. Sci. Eng., 1987, 88: 227
doi: 10.1016/0025-5416(87)90089-9
|
18 |
Alam M Z, Srivathsa B, Kamat S V, et al. Study of brittle-to-ductile-transition in Pt-aluminide bond coat using micro-tensile testing method [J]. Trans. Indian Inst. Met., 2011, 64: 57
doi: 10.1007/s12666-011-0011-y
|
19 |
Dryepondt S, Pint B A. Determination of the ductile to brittle temperature transition of aluminide coatings and its influence on the mechanical behavior of coated specimens [J]. Surf. Coat. Technol., 2010, 205: 1195
doi: 10.1016/j.surfcoat.2010.08.081
|
20 |
Noebe R D, Cullers C L, Bowman R R. The effect of strain rate and temperature on the tensile properties of NiAl [J]. J. Mater. Res., 1992, 7: 605
doi: 10.1557/JMR.1992.0605
|
21 |
Eskner M, Sandström R. Measurement of the ductile-to-brittle transition temperature in a nickel aluminide coating by a miniaturised disc bending test technique [J]. Surf. Coat. Technol., 2003, 165: 71
doi: 10.1016/S0257-8972(02)00702-8
|
22 |
Alam M Z, Chatterjee D, Muraleedharan K, et al. Effect of strain rate on ductile-to-brittle transition temperature of a free-standing Pt-aluminide bond coat [J]. Metall. Mater Trans., 2011, 42A: 1431
|
23 |
Alam M Z, Chatterjee D, Kamat S V, et al. Evaluation of ductile-brittle transition temperature (DBTT) of aluminide bond coats by micro-tensile test method [J]. Mater. Sci. Eng., 2010, A527: 7147
|
24 |
Texier D, Monceau D, Selezneff S, et al. High temperature micromechanical behavior of a Pt-modified nickel aluminide bond-coating and of its interdiffusion zone with the superalloy substrate [J]. Metall. Mater. Trans., 2020, 51A: 1475
|
25 |
Reppich B. Some new aspects concerning particle hardening mechanisms in γ′ precipitating Ni-base alloys—I. Theoretical concept [J]. Acta Metall., 1982, 30: 87
doi: 10.1016/0001-6160(82)90048-7
|
26 |
Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 151
|
|
胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2010: 151
|
27 |
Feng D. The Physics of Metals Mechanical Properties of Metals [M]. Vol. 3, Beijing: Science Press, 1999: 495
|
|
冯 端. 金属物理学(第三卷 金属力学性质) [M]. 北京: 科学出版社, 1999: 495
|
28 |
Rice J R, Thomson R. Ductile versus brittle behaviour of crystals [J]. Philos. Mag., 1974, 29: 73
doi: 10.1080/14786437408213555
|
29 |
Groves G W, Kelly A. Change of shape due to dislocation climb [J]. Philos. Mag., 1969, 19: 977
doi: 10.1080/14786436908225862
|
30 |
Noebe R D, Bowman R R, Nathal M V. Physical and mechanical properties of the B2 compound NiAl [J]. Int. Mater. Rev., 1993, 38: 193
doi: 10.1179/imr.1993.38.4.193
|
31 |
Rickman J M, LeSar R, Srolovitz D J. Solute effects on dislocation glide in metals [J]. Acta Mater., 2003, 51: 1199
doi: 10.1016/S1359-6454(02)00304-X
|
32 |
Su Y, Tian S G, Yu H C, et al. Deformation mechanisms of Ni-based single crystal superalloys during steady-state creep at intermediate temperatures [J]. Acta Metall. Sin., 2015, 51: 1472
doi: 10.11900/0412.1961.2015.00158
|
|
苏 勇, 田素贵, 于慧臣 等. 镍基单晶高温合金中温稳态蠕变期间的变形机制 [J]. 金属学报, 2015, 51: 1472
|
33 |
Sakata T, Yasuda H Y, Umakoshi Y. Interphase boundary fracture and grain boundary precipitation of Ni3Al(γ′) phase in β-NiAl bicrystals [J]. Acta Mater., 2003, 51: 1561
doi: 10.1016/S1359-6454(02)00558-X
|
34 |
Jiang C, Sordelet D J, Gleeson B. Effects of Pt on the elastic properties of B2 NiAl: A combined first-principles and experimental study [J]. Acta Mater., 2006, 54: 2361
doi: 10.1016/j.actamat.2006.01.010
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|