|
|
Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation |
CHEN Wei1,2, CHEN Hongcan1,2, WANG Chenchong3, XU Wei3, LUO Qun1,2( ), LI Qian1,2, CHOU Kuochih1,2 |
1.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 2.Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 3.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
|
Cite this article:
CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation. Acta Metall Sin, 2022, 58(2): 175-183.
|
Abstract Ultrahigh-strength steels have been widely used in critical engineering structures in military and civilian applications owing to the combination of ultrahigh strength and excellent toughness. The martensitic transformation start temperature (Ms) is an important parameter for designing alloys; it describes the thermodynamic stability and transformation behavior of austenite, affecting the strength and toughness of the alloy. To explore the influence of dilatational strain energy during martensitic transformation on Ms and calculate Ms in the Fe-C-Ni system, the dilatational curves of Fe-C-Ni alloys are measured using a dilatometer. Three tangents method is used to calculate Ms and austenitic transformation start temperature. The influence of composition on microstructure and lattice parameters after martensitic transformation was analyzed using OM and XRD. The dilatational strain energy model in the nonchemical driving force of martensitic transformation is modified considering the interaction between C and Ni components. The Ms of Fe-C-Ni system was calculated using a thermodynamic model in which the sum of martensitic transformation chemical driving force (the difference of Gibbs free energy between fcc and bcc phases) and nonchemical driving force (shearing strain energy of austenite, dilatational strain energy of austenite, dislocation stored energy of martensite, and interfacial energy of austenite and martensite) is zero. These results show that increasing C and Ni contents promote lattice expansion of the bcc phase after transformation whereas increasing Ni content reduces the martensite lath. The average proportion of dilatational strain energy of austenite in nonchemical driving force is approximately 41.3% in Fe-C-Ni alloys with atomic fractions of C < 1.0% and Ni < 20%. The prediction error of Ms in the Fe-C-Ni system is 4.1% using the modified model.
|
Received: 04 November 2020
|
|
Fund: National Natural Science Foundation of China(U1808208);Independent Research and Development Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China(SKLASS2020-Z01);Science and Technology Commission of Shanghai Municipality(19DZ2270200) |
About author: LUO Qun, associate professor, Tel: (021)66136577, E-mail: qunluo@shu.edu.cn
|
1 |
Jin X J , Gong Y , Han X H , et al . A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
|
|
金学军, 龚 煜, 韩先洪 等 . 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
|
2 |
Tian Y Q , Tian G , Zheng X P , et al . C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels [J]. Acta Metall. Sin., 2019, 55: 332
|
|
田亚强, 田 耕, 郑小平 等 . 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性 [J]. 金属学报, 2019, 55: 332
|
3 |
Wang C Y , Chang Y , Yang J , et al . The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
|
|
王存宇, 常 颖, 杨 洁 等 . 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
|
4 |
Celada-Casero C , Sietsma J , Santofimia M J . The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
|
5 |
Santofimia M J , Zhao L , Petrov R , et al . Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
|
6 |
Zhang B , Peng Y H , Lu X , et al . Study of γ→ε martensite transformation of Fe-24Mn-Ge alloys [J]. Acta Metall. Sin., 2001, 37: 1238
|
|
张 斌, 彭颖红, 陆 兴 等 . Fe-Mn-Ge合金γ→ε马氏体相变的研究 [J]. 金属学报, 2001, 37: 1238
|
7 |
Hu L , Wang X , Yi X H , et al . Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
|
|
胡 磊, 王 学, 尹孝辉 等 . 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 [J]. 金属学报, 2018, 54: 1767
|
8 |
Lee S J , Park K S . Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
|
9 |
Finkler H , Schirra M . Transformation behaviour of the high temperature martensitic steels with 8-14% chromium [J]. Steel Res., 1996, 67: 328
|
10 |
van Bohemen S M C , Santofimia M J , Sietsma J . Experimental evidence for bainite formation below MS in Fe-0.66C [J]. Scr. Mater., 2008, 58: 488
|
11 |
Hsu T Y . An approximate approach for the calculation of MS in iron-base alloys [J]. J. Mater. Sci., 1985, 20: 23
|
12 |
Luo Q , Chen H C , Chen W , et al . Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
|
13 |
Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
|
14 |
Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
|
15 |
Ghosh G , Olson G B . Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation-II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
|
16 |
Lu Q , Liu S L , Li W , et al . Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
|
17 |
Wang C C , Shen C G , Huo X J , et al . Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels [J]. Nucl. Eng. Technol., 2020, 52: 1008
|
18 |
Eyercioglu O , Kanca E , Pala M , et al . Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks [J]. J. Mater. Process. Technol., 2008, 200: 146
|
19 |
Wang C C , Shen C G , Cui Q , et al . Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
|
20 |
You W , Fang H S , Bai B Z . Predicting the martensitic transformation start temperature using back-propagation artificial neural networks [J]. Acta Metall. Sin., 2003, 39: 630
|
|
由 伟, 方鸿生, 白秉哲 . 用反向传播人工神经网络预测低碳低合金钢的马氏体转变开始温度 [J]. 金属学报, 2003, 39: 630
|
21 |
Yang F X , Zheng W S , He Y L , et al . Thermodynamic calculation of martensitic transformation start temperature in Fe-C-Mn-Si-Cr alloys [J]. Shanghai Met., 2016, 38(1): 1
|
|
杨飞翔, 郑伟森, 何燕霖 等 . Fe-C-Mn-Si-Cr的马氏体开始转变点的热力学计算 [J]. 上海金属, 2016, 38(1): 1
|
22 |
Ishida K . Calculation of the effect of alloying elements on the Ms temperature in steels [J]. J. Alloys Compd., 1995, 220: 126
|
23 |
Ishida K . Effect of alloying elements on the critical driving force of martensitic transformation in iron alloys [J]. Scr. Metall., 1977, 11: 237
|
24 |
Xie H J , Wu X C , Min Y A . Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel [J]. J. Iron Steel Res. Int., 2008, 15: 56
|
25 |
Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: the Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 79
|
26 |
van Bohemen S M C , Morsdorf L . Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
|
27 |
Wang B H , Bai B Z , Ma H F , et al . Yield ratio of Nb-Ti micro-alloyed Mn-series low carbon bainitic steel with different tempering temperature [J]. Chin. J. Rare Met., 2019, 43: 151
|
|
王宝华, 白秉哲, 马海峰 等 . 回火温度对Nb-Ti微合金化Mn系低碳贝氏体钢屈强比的影响 [J]. 稀有金属, 2019, 43: 151
|
28 |
Ji Y P , Ren H P , Peng J , et al . Growth restriction effect of solutes on refinement of solidification structure in iron-based binary alloys [J]. Chin. J. Rare Met., 2020, 44: 886
|
|
计云萍, 任慧平, 彭 军 等 . 铁基二元合金凝固细化中溶质的生长抑制作用 [J]. 稀有金属, 2020, 44: 886
|
29 |
Nakada N , Kusunoki N , Kajihara M , et al . Difference in thermodynamics between ferrite and martensite in the Fe-Ni system [J]. Scr. Mater., 2017, 138: 105
|
30 |
He Y M , Zhang J X , Wang Y H , et al . The expansion behavior caused by deformation-induced martensite to austenite transformation in heavily cold-rolled metastable austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A739: 343
|
31 |
Moyer J M , Ansell G S . The volume expansion accompanying the martensite transformation in iron-carbon alloys [J]. Metall. Trans., 1975, 6A: 1785
|
32 |
Ren X B , Wang X T . Carbon ordering in Fe-1.83C martensite II. Crystal structure of long-period ordered phase [J]. Acta Metall. Sin., 1994, 30: 337
|
|
任晓兵, 王笑天 . Fe- 1.83C马氏体中碳的有序化Ⅱ. 长周期有序相的晶体结构 [J]. 金属学报, 1994, 30: 337
|
33 |
Hsu T Y , Li L , Jiang B H . Thermodynamic calculation of the equilibrium temperature between the tetragonal and monoclinic phases in CeO2-ZrO2 [J]. Mater. Trans., 1996, 37: 1281
|
34 |
Fields R J , Weerasooriya T , Ashby M F . Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel [J]. Metall. Trans., 1980, 11A: 333
|
35 |
Field D M , Baker D S , Van Aken D C . On the prediction of α-martensite temperatures in medium manganese steels [J]. Metall. Mater. Trans., 2017, 48A: 2150
|
36 |
Kaufman L , Cohen M . The martensitic transformation in the iron-nickel system [J]. JOM, 1956, 8(10): 1393
|
37 |
Scheil E , Saftig E . Messung der umwandlungswärme bei der martensitbildung an eisen-nickel-legierungen mit hilfe eines trockeneiskalorimeters [J]. Arch. Eisenhüttenwes., 1960, 31: 623
|
38 |
Yeo R B G . Effect of some alloying elements on the transformation of Fe-22.5PctNi alloys [J]. Trans. Metall. Soc. AIME, 1963, 227: 884
|
39 |
Ishida K , Nishizawa T . Ferrite/austenite stabilizing parameter of alloying elements in steel at 200-500oC [J]. Trans. Jpn. Inst. Met., 1974, 15: 217
|
40 |
Campbell C E . Systems design of high-performance stainless steels [D]. Evanston: Northwestern University, 1997
|
41 |
Gabriel A , Gustafson P , Ansara I . A thermodynamic evaluation of the C-Fe-Ni system [J]. Calphad, 1987, 11: 203
|
42 |
Ghosh G , Olson G B . Computational thermodynamics and the kinetics of martensitic transformation [J]. J. Phase Equilib., 2001, 22: 199
|
43 |
Magee C L , Davies R G . The structure, deformation and strength of ferrous martensites [J]. Acta Metall., 1971, 19: 345
|
44 |
Rao M M , Winchell P G . Growth rate of bainite form low-carbon iron-nickel-carbon austenite [J]. Trans. Metall. Soc. AIME, 1967, 239: 956
|
45 |
Steven W , Haynes A G . Temperature of formation of martensite and bainite in low-alloy steel [J]. J. Iron Steel Inst., 1956, 183: 349
|
46 |
Izumiyama M , Tsuchiya M , Yunoshin I . Effects of alloying element on supercooled A3 transformation of iron [J]. Sci. Rep. Res. Inst., Tohoku Univ., 1970, 22A: 105
|
47 |
Li P Y , Wang Y S , Meng F Y , et al . Effect of heat treatment temperature on martensitic transformation and superelasticity of the Ti49Ni51 shape memory alloy [J]. Materials, 2019, 12: 2539
|
48 |
Ning B Q , Yan Z S , Fu J C , et al . Austenitic stability process of T91 steel held isothermally above Ms [J]. J. Mater. Sci. Eng., 2011, 29: 21
|
|
宁保群, 严泽生, 付继成 等 . Ms点以上保温时T91钢的奥氏体稳定化过程 [J]. 材料科学与工程学报, 2011, 29: 21
|
49 |
Hsu T Y , Li J , Zeng Z P . Effect of solution strengthening of austenite on martensitic transformation in Fe-Ni-C alloys [J]. Acta Metall. Sin., 1986, 22(6): 46
|
|
徐祖耀, 李 箭, 曾振鹏 . Fe-Ni-C合金中奥氏体固溶强化对马氏体相变的影响 [J]. 金属学报, 1986, 22(6): 46
|
50 |
Greninger A B . The martensite thermal arrest in iron-carbon alloys and plain carbon steels [J]. Trans. ASM, 1942, 30: 1
|
51 |
Wilson E A . The γ→α transformation in iron and its dilute alloys [J]. Scr. Metall., 1970, 4: 309
|
52 |
Morozov O P . Règles cinétiques et structurales de transformation de l'austénite dans les aciers [J]. Fiz. Met. Metalloved., 1984, 57: 142
|
53 |
Mirzaev D A , Shtejnberg M M , Ponomareva T N , et al . Effect of cooling rate on martensite point position: Carbon steels [J]. Fiz. Met. Metalloved., 1979, 47: 125
|
54 |
Goodenow R H , Hehemann R F . Transformation in iron and Fe-9pct Ni alloys [J]. Trans. Metall. Soc. AIME, 1965, 233: 1777
|
55 |
Winchell P G , Cohen M . The strength of martensite [J]. Trans. Amer. Soc. Met., 1962, 55: 347
|
56 |
Mirzaev D A , Morozov O P , Shtejnberg M M . On the relation between γ➝α transformations in iron and iron alloys [J]. Fiz. Met. Metalloved., 1973, 36: 560
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|