Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (2): 175-183    DOI: 10.11900/0412.1961.2020.00443
Research paper Current Issue | Archive | Adv Search |
Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation
CHEN Wei1,2, CHEN Hongcan1,2, WANG Chenchong3, XU Wei3, LUO Qun1,2(), LI Qian1,2, CHOU Kuochih1,2
1.State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2.Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
3.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation. Acta Metall Sin, 2022, 58(2): 175-183.

Download:  HTML  PDF(2219KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ultrahigh-strength steels have been widely used in critical engineering structures in military and civilian applications owing to the combination of ultrahigh strength and excellent toughness. The martensitic transformation start temperature (Ms) is an important parameter for designing alloys; it describes the thermodynamic stability and transformation behavior of austenite, affecting the strength and toughness of the alloy. To explore the influence of dilatational strain energy during martensitic transformation on Ms and calculate Ms in the Fe-C-Ni system, the dilatational curves of Fe-C-Ni alloys are measured using a dilatometer. Three tangents method is used to calculate Ms and austenitic transformation start temperature. The influence of composition on microstructure and lattice parameters after martensitic transformation was analyzed using OM and XRD. The dilatational strain energy model in the nonchemical driving force of martensitic transformation is modified considering the interaction between C and Ni components. The Ms of Fe-C-Ni system was calculated using a thermodynamic model in which the sum of martensitic transformation chemical driving force (the difference of Gibbs free energy between fcc and bcc phases) and nonchemical driving force (shearing strain energy of austenite, dilatational strain energy of austenite, dislocation stored energy of martensite, and interfacial energy of austenite and martensite) is zero. These results show that increasing C and Ni contents promote lattice expansion of the bcc phase after transformation whereas increasing Ni content reduces the martensite lath. The average proportion of dilatational strain energy of austenite in nonchemical driving force is approximately 41.3% in Fe-C-Ni alloys with atomic fractions of C < 1.0% and Ni < 20%. The prediction error of Ms in the Fe-C-Ni system is 4.1% using the modified model.

Key words:  Fe-C-Ni system      martensitic transformation start temperature      dilatational strain energy      thermodynamic calculation     
Received:  04 November 2020     
ZTFLH:  TG111.3  
Fund: National Natural Science Foundation of China(U1808208);Independent Research and Development Project of the State Key Laboratory of Advanced Special Steel, Shanghai University, China(SKLASS2020-Z01);Science and Technology Commission of Shanghai Municipality(19DZ2270200)
About author:  LUO Qun, associate professor, Tel: (021)66136577, E-mail: qunluo@shu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00443     OR     https://www.ams.org.cn/EN/Y2022/V58/I2/175

Steel numberNiCFe
118.330.49Bal.
29.140.47Bal.
34.320.48Bal.
415.620.86Bal.
57.940.88Bal.
64.090.97Bal.
Table 1  Compositions of Fe-C-Ni alloys
Fig.1  Dilatation curves of Fe-C-Ni alloys with different atomic fractions of C (Ms—martensitic transformation start temperature, As—austenitic transformation start temperature)
Fig.2  OM images of Fe-C-Ni alloys with different atomic fractions of C and Ni
Fig.3  XRD spectra of Fe-C-Ni alloys (a) and calculated lattice constants of bcc phase in Fe-C-Ni alloys (b)
Fig.4  Fitting line of linear dilatational ratio (ΔL / L) of martensitic transformation vs the product of atomic fraction of C and Ni (xCxNi) by Eq.(17)
Fig.5  Comparison between 0.5(Ms + As)[36-40] with the predicted T0 (this work and Refs.[41,42]) in Fe-Ni system (T0—temperature of chemical driving force is equal to 0, TC—Curie temperature) (a) and calculated Ms in Fe-C-Ni system (b)
Fig.6  Calculated and experimental (this work and Refs.[11,43-45]) Ms in Fe-C-Ni alloys with different Ni contents (a) and comparison of experimental and calculated (this work and Refs.[11,22]) Ms by three models(experimental data from: Fe-C[11,50-53], Fe-Ni[36,46,54-56], and Fe-C-Ni[11,43,44,54]) (b)
Fig.7  Nonchemical driving force and dilatational strain energy of Fe-C-Ni alloys at Ms
1 Jin X J , Gong Y , Han X H , et al . A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels [J]. Acta Metall. Sin., 2020, 56: 411
金学军, 龚 煜, 韩先洪 等 . 先进热成形汽车钢制造与使用的研究现状与展望 [J]. 金属学报, 2020, 56: 411
2 Tian Y Q , Tian G , Zheng X P , et al . C and Mn elements characterization and stability of retained austenite in different locations of quenching and partitioning bainite steels [J]. Acta Metall. Sin., 2019, 55: 332
田亚强, 田 耕, 郑小平 等 . 淬火配分贝氏体钢不同位置残余奥氏体C、Mn元素表征及其稳定性 [J]. 金属学报, 2019, 55: 332
3 Wang C Y , Chang Y , Yang J , et al . The combined effect of hot deformation plus quenching and partitioning treatment on martensite transformation of low carbon alloyed steel [J]. Acta Metall. Sin., 2015, 51: 913
王存宇, 常 颖, 杨 洁 等 . 热变形和淬火配分处理的复合作用对低碳合金钢马氏体相变机制的影响 [J]. 金属学报, 2015, 51: 913
4 Celada-Casero C , Sietsma J , Santofimia M J . The role of the austenite grain size in the martensitic transformation in low carbon steels [J]. Mater. Des., 2019, 167: 107625
5 Santofimia M J , Zhao L , Petrov R , et al . Microstructural development during the quenching and partitioning process in a newly designed low-carbon steel [J]. Acta Mater., 2011, 59: 6059
6 Zhang B , Peng Y H , Lu X , et al . Study of γε martensite transformation of Fe-24Mn-Ge alloys [J]. Acta Metall. Sin., 2001, 37: 1238
张 斌, 彭颖红, 陆 兴 等 . Fe-Mn-Ge合金γε马氏体相变的研究 [J]. 金属学报, 2001, 37: 1238
7 Hu L , Wang X , Yi X H , et al . Influence of inter-pass temperature on residual stress in multi-layer and multi-pass butt-welded 9%Cr heat-resistant steel pipes [J]. Acta Metall. Sin., 2018, 54: 1767
胡 磊, 王 学, 尹孝辉 等 . 层间温度对9%Cr热强钢管道多层多道焊接头残余应力的影响 [J]. 金属学报, 2018, 54: 1767
8 Lee S J , Park K S . Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
9 Finkler H , Schirra M . Transformation behaviour of the high temperature martensitic steels with 8-14% chromium [J]. Steel Res., 1996, 67: 328
10 van Bohemen S M C , Santofimia M J , Sietsma J . Experimental evidence for bainite formation below MS in Fe-0.66C [J]. Scr. Mater., 2008, 58: 488
11 Hsu T Y . An approximate approach for the calculation of MS in iron-base alloys [J]. J. Mater. Sci., 1985, 20: 23
12 Luo Q , Chen H C , Chen W , et al . Thermodynamic prediction of martensitic transformation temperature in Fe-Ni-C system [J]. Scr. Mater., 2020, 187: 413
13 Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part II. FCC→BCC and other martensitic transformations [J]. Metall. Trans., 1976, 7A: 1905
14 Olson G B , Cohen M . A general mechanism of martensitic nucleation: Part I. General concepts and the FCC→HCP transformation [J]. Metall. Trans., 1976, 7A: 1897
15 Ghosh G , Olson G B . Kinetics of f.c.c.→b.c.c. heterogeneous martensitic nucleation-II. Thermal activation [J]. Acta Metall. Mater., 1994, 42: 3371
16 Lu Q , Liu S L , Li W , et al . Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
17 Wang C C , Shen C G , Huo X J , et al . Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels [J]. Nucl. Eng. Technol., 2020, 52: 1008
18 Eyercioglu O , Kanca E , Pala M , et al . Prediction of martensite and austenite start temperatures of the Fe-based shape memory alloys by artificial neural networks [J]. J. Mater. Process. Technol., 2008, 200: 146
19 Wang C C , Shen C G , Cui Q , et al . Tensile property prediction by feature engineering guided machine learning in reduced activation ferritic/martensitic steels [J]. J. Nucl. Mater., 2020, 529: 151823
20 You W , Fang H S , Bai B Z . Predicting the martensitic transformation start temperature using back-propagation artificial neural networks [J]. Acta Metall. Sin., 2003, 39: 630
由 伟, 方鸿生, 白秉哲 . 用反向传播人工神经网络预测低碳低合金钢的马氏体转变开始温度 [J]. 金属学报, 2003, 39: 630
21 Yang F X , Zheng W S , He Y L , et al . Thermodynamic calculation of martensitic transformation start temperature in Fe-C-Mn-Si-Cr alloys [J]. Shanghai Met., 2016, 38(1): 1
杨飞翔, 郑伟森, 何燕霖 等 . Fe-C-Mn-Si-Cr的马氏体开始转变点的热力学计算 [J]. 上海金属, 2016, 38(1): 1
22 Ishida K . Calculation of the effect of alloying elements on the Ms temperature in steels [J]. J. Alloys Compd., 1995, 220: 126
23 Ishida K . Effect of alloying elements on the critical driving force of martensitic transformation in iron alloys [J]. Scr. Metall., 1977, 11: 237
24 Xie H J , Wu X C , Min Y A . Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel [J]. J. Iron Steel Res. Int., 2008, 15: 56
25 Lukas H L , Fries S G , Sundman B . Computational Thermodynamics: the Calphad Method [M]. Cambridge: Cambridge University Press, 2007: 79
26 van Bohemen S M C , Morsdorf L . Predicting the Ms temperature of steels with a thermodynamic based model including the effect of the prior austenite grain size [J]. Acta Mater., 2017, 125: 401
27 Wang B H , Bai B Z , Ma H F , et al . Yield ratio of Nb-Ti micro-alloyed Mn-series low carbon bainitic steel with different tempering temperature [J]. Chin. J. Rare Met., 2019, 43: 151
王宝华, 白秉哲, 马海峰 等 . 回火温度对Nb-Ti微合金化Mn系低碳贝氏体钢屈强比的影响 [J]. 稀有金属, 2019, 43: 151
28 Ji Y P , Ren H P , Peng J , et al . Growth restriction effect of solutes on refinement of solidification structure in iron-based binary alloys [J]. Chin. J. Rare Met., 2020, 44: 886
计云萍, 任慧平, 彭 军 等 . 铁基二元合金凝固细化中溶质的生长抑制作用 [J]. 稀有金属, 2020, 44: 886
29 Nakada N , Kusunoki N , Kajihara M , et al . Difference in thermodynamics between ferrite and martensite in the Fe-Ni system [J]. Scr. Mater., 2017, 138: 105
30 He Y M , Zhang J X , Wang Y H , et al . The expansion behavior caused by deformation-induced martensite to austenite transformation in heavily cold-rolled metastable austenitic stainless steel [J]. Mater. Sci. Eng., 2019, A739: 343
31 Moyer J M , Ansell G S . The volume expansion accompanying the martensite transformation in iron-carbon alloys [J]. Metall. Trans., 1975, 6A: 1785
32 Ren X B , Wang X T . Carbon ordering in Fe-1.83C martensite II. Crystal structure of long-period ordered phase [J]. Acta Metall. Sin., 1994, 30: 337
任晓兵, 王笑天 . Fe- 1.83C马氏体中碳的有序化Ⅱ. 长周期有序相的晶体结构 [J]. 金属学报, 1994, 30: 337
33 Hsu T Y , Li L , Jiang B H . Thermodynamic calculation of the equilibrium temperature between the tetragonal and monoclinic phases in CeO2-ZrO2 [J]. Mater. Trans., 1996, 37: 1281
34 Fields R J , Weerasooriya T , Ashby M F . Fracture-mechanisms in pure iron, two austenitic steels, and one ferritic steel [J]. Metall. Trans., 1980, 11A: 333
35 Field D M , Baker D S , Van Aken D C . On the prediction of α-martensite temperatures in medium manganese steels [J]. Metall. Mater. Trans., 2017, 48A: 2150
36 Kaufman L , Cohen M . The martensitic transformation in the iron-nickel system [J]. JOM, 1956, 8(10): 1393
37 Scheil E , Saftig E . Messung der umwandlungswärme bei der martensitbildung an eisen-nickel-legierungen mit hilfe eines trockeneiskalorimeters [J]. Arch. Eisenhüttenwes., 1960, 31: 623
38 Yeo R B G . Effect of some alloying elements on the transformation of Fe-22.5PctNi alloys [J]. Trans. Metall. Soc. AIME, 1963, 227: 884
39 Ishida K , Nishizawa T . Ferrite/austenite stabilizing parameter of alloying elements in steel at 200-500oC [J]. Trans. Jpn. Inst. Met., 1974, 15: 217
40 Campbell C E . Systems design of high-performance stainless steels [D]. Evanston: Northwestern University, 1997
41 Gabriel A , Gustafson P , Ansara I . A thermodynamic evaluation of the C-Fe-Ni system [J]. Calphad, 1987, 11: 203
42 Ghosh G , Olson G B . Computational thermodynamics and the kinetics of martensitic transformation [J]. J. Phase Equilib., 2001, 22: 199
43 Magee C L , Davies R G . The structure, deformation and strength of ferrous martensites [J]. Acta Metall., 1971, 19: 345
44 Rao M M , Winchell P G . Growth rate of bainite form low-carbon iron-nickel-carbon austenite [J]. Trans. Metall. Soc. AIME, 1967, 239: 956
45 Steven W , Haynes A G . Temperature of formation of martensite and bainite in low-alloy steel [J]. J. Iron Steel Inst., 1956, 183: 349
46 Izumiyama M , Tsuchiya M , Yunoshin I . Effects of alloying element on supercooled A3 transformation of iron [J]. Sci. Rep. Res. Inst., Tohoku Univ., 1970, 22A: 105
47 Li P Y , Wang Y S , Meng F Y , et al . Effect of heat treatment temperature on martensitic transformation and superelasticity of the Ti49Ni51 shape memory alloy [J]. Materials, 2019, 12: 2539
48 Ning B Q , Yan Z S , Fu J C , et al . Austenitic stability process of T91 steel held isothermally above Ms [J]. J. Mater. Sci. Eng., 2011, 29: 21
宁保群, 严泽生, 付继成 等 . Ms点以上保温时T91钢的奥氏体稳定化过程 [J]. 材料科学与工程学报, 2011, 29: 21
49 Hsu T Y , Li J , Zeng Z P . Effect of solution strengthening of austenite on martensitic transformation in Fe-Ni-C alloys [J]. Acta Metall. Sin., 1986, 22(6): 46
徐祖耀, 李 箭, 曾振鹏 . Fe-Ni-C合金中奥氏体固溶强化对马氏体相变的影响 [J]. 金属学报, 1986, 22(6): 46
50 Greninger A B . The martensite thermal arrest in iron-carbon alloys and plain carbon steels [J]. Trans. ASM, 1942, 30: 1
51 Wilson E A . The γα transformation in iron and its dilute alloys [J]. Scr. Metall., 1970, 4: 309
52 Morozov O P . Règles cinétiques et structurales de transformation de l'austénite dans les aciers [J]. Fiz. Met. Metalloved., 1984, 57: 142
53 Mirzaev D A , Shtejnberg M M , Ponomareva T N , et al . Effect of cooling rate on martensite point position: Carbon steels [J]. Fiz. Met. Metalloved., 1979, 47: 125
54 Goodenow R H , Hehemann R F . Transformation in iron and Fe-9pct Ni alloys [J]. Trans. Metall. Soc. AIME, 1965, 233: 1777
55 Winchell P G , Cohen M . The strength of martensite [J]. Trans. Amer. Soc. Met., 1962, 55: 347
56 Mirzaev D A , Morozov O P , Shtejnberg M M . On the relation between γ➝α transformations in iron and iron alloys [J]. Fiz. Met. Metalloved., 1973, 36: 560
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[4] HAN Guomin, HAN Zhiqiang, Alan A. Luo, Anil K. Sachdev, LIU Baicheng. PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY[J]. 金属学报, 2013, 49(3): 277-283.
[5] LIANG Jingjing, ZHU Ming, YUAN Zhonghua, WANG Junwu, JIN Tao,SUN Xiaofeng, HU Zhuangqi. INFLUENCE OF Re ON THE PHASE CONSTITUENT OF A NiCoCrAlY COATING ALLOY[J]. 金属学报, 2013, 49(3): 330-340.
[6] MA Yue SU Hang PAN Tao YU Yinhong YANG Caifu ZHANG Yongquan PENG Yun. STUDY OF COMPLEX DUCTILE INCLUSIONS CONTROLLING IN MEDIUM-HIGH CARBON STEELS[J]. 金属学报, 2012, 48(11): 1321-1328.
[7] WANG Yi SUN Feng DONG Xianping ZHANG Lanting SHAN Aidang. THERMODYNAMIC STUDY ON EQUILIBRIUM PRECIPITATION PHASES IN A NOVEL Ni-Co BASE SUPERALLOY[J]. 金属学报, 2010, 46(3): 334-339.
[8] Chun-guang Kuai; Zhifang Peng. ELEMENTAL PARTITIONING CHARACTERISTICS AND STABILITY OF EQUILIBRIUM PHASES DURING 450-1200℃ IN T/P91 HEAT-RESISTANT STEEL[J]. 金属学报, 2008, 44(8): 897-900 .
[9] ;. RESEARCH ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A NEW WROUGHT SUPERALLOY[J]. 金属学报, 2008, 44(5): 540-546 .
[10] DING Xueyong;WANG Wenzhong(Northeastern University;Shenyang). A NEW THERMODYNAMIC CALCULATION FORMULA FOR ACTIVITY OF COMPONENT IN BINARY SYSTEM[J]. 金属学报, 1994, 30(22): 444-447.
[11] DING Xueyong;WANG Wenzhong;HAN Qiyong Northeastern University University of Science and Technology Beijing. THERMODYNAMIC CALCULATION OF Fe-P-j SYSTEM MELT[J]. 金属学报, 1993, 29(12): 21-26.
No Suggested Reading articles found!